首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integrin adhesion receptors appear to be regulated by molecules that bind to their cytoplasmic domains. We previously identified a 22-kDa, EF-hand-containing protein, CIB, which binds to the alpha(IIb) cytoplasmic tail of the platelet integrin, alpha(IIb)beta(3). Here we describe regions within CIB and alpha(IIb) that interact with one another. CIB binding to alpha(IIb) cytoplasmic tail peptides, as measured by intrinsic tryptophan fluorescence, indicates a CIB-binding site within a hydrophobic, 15-amino acid, membrane-proximal region of alpha(IIb). This region is analogous to the alpha-helical targets of other EF-hand-containing proteins, such as calcineurin B or calmodulin. A homology model of CIB based upon calcineurin B and recoverin indicated a conserved hydrophobic pocket within the C-terminal EF-hand motifs of CIB as a potential integrin-binding site. CIB engineered to contain alanine substitutions in the implicated regions retained wild type secondary structure as determined by circular dichroism, yet failed to bind alpha(IIb) in 11 of 12 cases, whereas CIB mutated within the N terminus retained binding activity. Thus, specific hydrophobic residues in the C terminus of CIB appear necessary for CIB binding to alpha(IIb). The identification of essential interacting regions within alpha(IIb) and CIB provides tools for further probing potential interrelated functions of these proteins.  相似文献   

2.
Calcium- and integrin-binding protein 1 (CIB1) is involved in the process of platelet aggregation by binding the cytoplasmic tail of the alpha(IIb) subunit of the platelet-specific integrin alpha(Iib)beta(3). Although poorly understood, it is widely believed that CIB1 acts as a global signaling regulator because it is expressed in many tissues that do not express integrin alpha(Iib)beta(3). We report the structure of human CIB1 to a resolution of 2.3 A, crystallized as a dimer. The dimer interface includes an extensive hydrophobic patch in a crystal form with 80% solvent content. Although the dimer form of CIB1 may not be physiologically relevant, this intersub-unit surface is likely to be linked to alpha(IIb) binding and to the binding of other signaling partner proteins. The C-terminal domain of CIB1 is structurally similar to other EF-hand proteins such as calmodulin and calcineurin B. Despite structural homology to the C-terminal domain, the N-terminal domain of CIB1 lacks calcium-binding sites. The structure of CIB1 revealed a complex with a molecule of glutathione in the reduced state bond to the N-terminal domain of one of the two subunits poised to interact with the free thiol of C35. Glutathione bound in this fashion suggests CIB1 may be redox regulated. Next to the bound GSH, the orientation of residues C35, H31, and S48 is suggestive of a cysteine-type protein phosphatase active site. The potential enzymatic activity of CIB1 is discussed and suggests a mechanism by which it regulates a wide variety of proteins in cells in addition to platelets.  相似文献   

3.
Calcium- and integrin-binding protein 1 (CIB1) regulates platelet aggregation in hemostasis through a specific interaction with the alphaIIb cytoplasmic domain of platelet integrin alphaIIbbeta3. In this work we report the structural characteristics of CIB1 in solution and the mechanistic details of its interaction with a synthetic peptide derived from the alphaIIb cytoplasmic domain. NMR spectroscopy experiments using perdeuterated CIB1 together with heteronuclear nuclear Overhauser effect experiments have revealed a well folded alpha-helical structure for both the ligand-free and alphaIIb-bound forms of the protein. Residual dipolar coupling experiments have shown that the N and C domains of CIB1 are positioned side by side, and chemical shift perturbation mapping has identified the alphaIIb-binding site as a hydrophobic channel spanning the entire C domain and part of the N domain. Data obtained with a truncated version of CIB1 suggest that the extreme C-terminal end of the protein weakly interacts with this channel in the absence of a biological target, but it is displaced by the alphaIIb cytoplasmic domain, suggesting a novel mechanism to increase binding specificity.  相似文献   

4.
Calcium- and integrin-binding protein (CIB) is a small EF-hand calcium-binding protein that is involved in hemostasis through its interaction with the alphaIIb cytoplasmic domain of integrinalphaIIbbeta(3). We have previously demonstrated that CIB lacks structural stability in the absence of divalent metal ions but that it acquires a well-folded conformation upon addition of Ca(2+) or Mg(2+). Here, we have used fluorescence spectroscopy, NMR spectroscopy, and isothermal titration calorimetry to demonstrate that both Ca(2+)-bound CIB (Ca(2+)-CIB) and the Mg(2+)-bound protein (Mg(2+)-CIB) bind with high affinity and through a similar mechanism to alphaIIb cytoplasmic domain peptides, but that metal-free CIB (apo-CIB) binds in a different manner. The interactions are thermodynamically distinct for Ca(2+)-CIB and Mg(2+)-CIB, but involve hydrophobic interactions in each case. Since the Mg(2+) concentration inside the cell is sufficient to saturate CIB at all times, our results imply that CIB would be capable of binding to the alphaIIb cytoplasmic domain independent of an intracellular Ca(2+) stimulus in vivo. This raises the question of whether CIB can act as a Ca(2+) sensor in alphaIIbbeta(3) signaling or if other regulatory mechanisms such as fibrinogen-induced conformational changes in alphaIIbbeta(3), post-translational modifications, or the binding of other accessory proteins mediate the interactions between CIB and alphaIIbbeta(3). Differences in NMR spectra do suggest, however, that Ca(2+)-binding to the Mg(2+)- CIB-alphaIIb complex induces subtle structural changes that could further modulate the activity of alphaIIbbeta(3).  相似文献   

5.
We have used recombinant or synthetic alphaIIb and beta3 integrin cytoplasmic peptides to study their in vitro complexation and ligand binding capacity by surface plasmon resonance. alpha.beta heterodimerization occurred in a 1:1 stoichiometry with a weak KD in the micromolar range. Divalent cations were not required for this association but stabilized the alpha.beta complex by decreasing the dissociation rate. alpha.beta complexation was impaired by the R995A substitution or the KVGFFKR deletion in alphaIIb but not by the beta3 S752P mutation. Recombinant calcium- and integrin-binding protein (CIB), an alphaIIb-specific ligand, bound to the alphaIIb cytoplasmic peptide in a Ca2+- or Mn2+-independent, one-to-one reaction with a KD value of 12 microM. In contrast, in vitro liquid phase binding of CIB to intact alphaIIbbeta3 occurred preferentially with Mn2+-activated alphaIIbbeta3 conformers, as demonstrated by enhanced coimmunoprecipitation of CIB with PAC-1-captured Mn2+-activated alphaIIbbeta3, suggesting that Mn2+ activation of intact alphaIIbbeta3 induces the exposure of a CIB-binding site, spontaneously exposed by the free alphaIIb peptide. Since CIB did not stimulate PAC-1 binding to inactive alphaIIbbeta3 nor prevented activated alphaIIbbeta3 occupancy by PAC-1, we conclude that CIB does not regulate alphaIIbbeta3 inside-out signaling, but rather is involved in an alphaIIbbeta3 post-receptor occupancy event.  相似文献   

6.
Calcium- and integrin-binding protein (CIB) is a novel member of the helix-loop-helix family of regulatory calcium-binding proteins which likely has a specific function in hemostasis through its interaction with platelet integrin alphaIIbbeta(3). The significant amino acid sequence homology between CIB and other regulatory calcium-binding proteins such as calmodulin, calcineurin B, and recoverin suggests that CIB may undergo a calcium-induced conformational change; however, the mechanism of calcium binding and the details of a structural change have not yet been investigated. Consequently, we have performed a variety of spectroscopic and microcalorimetric studies of CIB to determine its calcium binding characteristics, and the subsequent conformational changes that occur. Furthermore, we provide the first evidence for magnesium binding to CIB and determine the structural consequences of this interaction. Our results indicate that in the absence of any bound metal ions, apo-CIB adopts a folded yet highly flexible molten globule-like structure. Both calcium and magnesium binding induce conformational changes which stabilize both the secondary and tertiary structure of CIB, resulting in considerable increases in the thermal stability of the proteins. CIB was found to bind two Ca(2+) ions in a sequential manner with dissociation constants (K(d)) near 0.54 and 1.9 microM for sites EF-4 and EF-3, respectively. In contrast, CIB bound only one Mg(2+) ion to EF-3 with a K(d) near 120 microM. Together, our results suggest that CIB may exist in multiple structural and metal ion-bound states in vivo which may play a role in its regulation of target proteins such as platelet integrin.  相似文献   

7.
Calcium- and integrin-binding protein 1 (CIB1) is a ubiquitous, multifunctional regulatory protein consisting of four helix-loop-helix EF-hand motifs. Neither EF-I nor EF-II binds divalent metal ions; however, EF-III is a mixed Mg2+/Ca2+-binding site, and EF-IV is a higher-affinity Ca2+-specific site. Through the generation of several CIB1 mutant proteins, we have investigated the importance of the last (-Z) metal-coordinating position of EF-III (D127) and EF-IV (E172) with respect to the binding of CIB1 to Mg2+, Ca2+, and its biological target, the cytoplasmic domain of the platelet alphaIIb integrin. A D127N mutant had reduced Mg2+ and Ca2+ affinity at EF-III but retained affinity for the alphaIIb domain. A D127E mutant had increased Mg2+ and Ca2+ affinity at EF-III, but unexpectedly, the affinity for the alphaIIb domain was too low for binding to be observed. E172Q and E172D mutants showed no and weak Mg2+ binding at EF-IV, respectively, and each mutant had reduced Ca2+ affinity at EF-IV and showed moderate metal-dependent differences in affinity for the alphaIIb domain. Finally, a D127Q mutant bound Mg2+ and Ca2+ in a manner similar to that of D127N, but like that of D127E, the affinity for the alphaIIb domain was reduced below the detection limit. These data, combined with a NMR-based structural comparison of the Mg2+- and Ca2+-loaded CIB1-alphaIIb peptide complexes, suggest that the D127E and D127Q mutations have a disruptive effect on alphaIIb binding since they expand the metal-binding loop and change the alpha-helix positions in EF-III. Conversely, upon replacement of the ancestral Glu with Asp at the -Z position of EF-III, CIB1 gained affinity for alphaIIb, and the Ca2+ affinity of CIB1 shifted into a range where the protein is able to act as an intracellular Ca2+ sensor.  相似文献   

8.
The Wiskott-Aldrich syndrome (WAS) is an X-chromosome-linked immunodeficiency disorder. The most common symptom seen in WAS patients is bleeding. One of the main causes of bleeding is defective platelet aggregation. The causative gene of WAS encodes WAS protein (WASP). Here, we show that WASP binds to the calcium- and integrin-binding protein (CIB) in platelets. CIB was originally identified as a protein binding to the alphaIIb cytoplasmic tail of platelet integrin alphaIIb beta3, which has a primary role in platelet aggregation. We also show that the WASP-CIB complex is important in alphaIIb beta3-mediated cell adhesion, and that in patients mutant forms of WASP are expressed at reduced levels or show lower affinities for CIB than wild-type WASP. Our results indicate that impaired complex formation between mutant WASPs and CIB reduces alphaIIb beta3-mediated cell adhesion and causes defective platelet aggregation, resulting in bleeding.  相似文献   

9.
CIB1 is a 22-kDa calcium binding, regulatory protein with approximately 50% homology to calmodulin and calcineurin B. CIB1 is widely expressed and binds to a number of effectors, such as integrin alphaIIb, PAK1, and polo-like kinases, in different tissues. However, the in vivo functions of CIB1 are not well understood. To elucidate the function of CIB1 in whole animals, we used homologous recombination in embryonic stem cells to generate Cib1(-/-) mice. Although Cib1(-/-) mice grow normally, the males are sterile due to disruption of the haploid phase of spermatogenesis. This is associated with reduced testis size and numbers of germ cells in seminiferous tubules, increased germ cell apoptosis, and the loss of elongated spermatids and sperm. Cib1(-/-) testes also show increased mRNA and protein expression of the cell cycle regulator Cdc2/Cdk1. In addition, mouse embryonic fibroblasts (MEFs) derived from Cib1(-/-) mice exhibit a much slower growth rate compared to Cib1(+/+) MEFs, suggesting that CIB1 regulates the cell cycle, differentiation of spermatogenic germ cells, and/or differentiation of supporting Sertoli cells.  相似文献   

10.
Functional domain structure of calcineurin A: mapping by limited proteolysis   总被引:15,自引:0,他引:15  
M J Hubbard  C B Klee 《Biochemistry》1989,28(4):1868-1874
Limited proteolysis of calcineurin, the Ca2+/calmodulin-stimulated protein phosphatase, with clostripain is sequential and defines four functional domains in calcineurin A (61 kDa). In the presence of calmodulin, an inhibitory domain located at the carboxyl terminus is rapidly degraded, yielding an Mr 57,000 fragment which retains the ability to bind calmodulin but whose p-nitrophenylphosphatase is fully active in the absence of Ca2+ and no longer stimulated by calmodulin. Subsequent cleavage(s), near the amino terminus, yield(s) an Mr 55,000 fragment which has lost more than 80% of the enzymatic activity. A third, slower, proteolytic cleavage in the carboxyl-terminal half of the protein converts the Mr 55,000 fragment to an Mr 42,000 polypeptide which contains the calcineurin B binding domain and an Mr 14,000 fragment which binds calmodulin in a Ca2+-dependent manner with high affinity. In the absence of calmodulin, clostripain rapidly severs both the calmodulin-binding and the inhibitory domains. The catalytic domain is preserved, and the activity of the proteolyzed 43-kDa enzyme is increased 10-fold in the absence of Ca2+ and 40-fold in its presence. The calcineurin B binding domain and calcineurin B appear unaffected by proteolysis both in the presence and in the absence of calmodulin. Thus, calcineurin A is organized into functionally distinct domains connected by proteolytically sensitive hinge regions. The catalytic, inhibitory, and calmodulin-binding domains are readily removed from the protease-resistant core, which contains the calcineurin B binding domain. Calmodulin stimulation of calcineurin is dependent on intact inhibitory and calmodulin-binding domains, but the degraded enzyme lacking these domains is still regulated by Ca2+.  相似文献   

11.
12.
The calcium- and integrin-binding protein 1 (CIB1) is a ubiquitous Ca(2+)-binding protein and a specific binding partner for the platelet integrin αIIb cytoplasmic domain, which confers the key role of CIB1 in hemostasis. CIB1 is also known to be involved in apoptosis, embryogenesis, and the DNA damage response. In this study, the solution structures of both Ca(2+)-CIB1 and Mg(2+)-CIB1 were determined using solution-state NMR spectroscopy. The methyl groups of Ile, Leu, and Val were selectively protonated to compensate for the loss of protons due to deuteration. The solution structure of Ca(2+)-CIB1 possesses smaller opened EF-hands in its C-domain compared with available crystal structures. Ca(2+)-CIB1 and Mg(2+)-CIB1 have similar structures, but the N-lobe of Mg(2+)-CIB1 is slightly more opened than that of Ca(2+)-CIB1. Additional NMR experiments, such as chemical shift perturbation and methyl group solvent accessibility as measured by a nitroxide surface probe, were carried out to further characterize the structures of Ca(2+)-CIB1 and Mg(2+)-CIB1 as well as their interactions with the integrin αIIb cytoplasmic domain. NMR measurements of backbone amide proton slow motion (microsecond to millisecond) dynamics confirmed that the C-terminal helix of Ca(2+)-CIB1 is displaced upon αIIb binding. The EF-hand III of both Ca(2+)-CIB1 and Mg(2+)-CIB1 was identified to be directly involved in the interaction of CIB1 with αIIb. Together, these data illustrate that CIB1 behaves quite differently from related EF-hand regulatory calcium-binding proteins, such as calmodulin or neuronal calcium sensor proteins.  相似文献   

13.
In response to agonist stimulation, the alphaIIbbeta3 integrin on platelets is converted to an active conformation that binds fibrinogen and mediates platelet aggregation. This process contributes to both normal hemostasis and thrombosis. Activation of alphaIIbbeta3 is believed to occur in part via engagement of the beta3 cytoplasmic tail with talin; however, the role of the alphaIIb tail and its potential binding partners in regulating alphaIIbbeta3 activation is less clear. We report that calcium and integrin binding protein 1 (CIB1), which interacts directly with the alphaIIb tail, is an endogenous inhibitor of alphaIIbbeta3 activation; overexpression of CIB1 in megakaryocytes blocks agonist-induced alphaIIbbeta3 activation, whereas reduction of endogenous CIB1 via RNA interference enhances activation. CIB1 appears to inhibit integrin activation by competing with talin for binding to alphaIIbbeta3, thus providing a model for tightly controlled regulation of alphaIIbbeta3 activation.  相似文献   

14.
The human calcium- and integrin-binding protein 1 (CIB1) plays important roles in various cellular functions. In this study, three other members of this protein family (CIB2-4: CIB2, CIB3, and CIB4) were purified and subsequently characterized using biophysical and structural approaches. As expected from sequence alignments, CIB2-4 were shown to bind calcium (Ca(2+)) and magnesium (Mg(2+)) ions. Binding of Ca(2+) or Mg(2+) ions changes the secondary structure of CIB2-4 and the exposure of hydrophobic surface area. Ca(2+) and Mg(2+) ions also stabilize the tertiary structures for CIB2 and CIB3. Through in vitro binding experiments, we show that CIB2 can interact with the integrin αIIb cytoplasmic domain and the integrin α7b membrane-proximal fragment. Fluorescence experiments using a 7-azatryptophan labeled peptide demonstrate that CIB2, CIB3, and CIB4 are binding partners for the integrin αIIb subunit, which suggests that they are potentially involved in regulating integrin αIIb subunit activation. The distinct responses of αIIb to the different CIB3 and CIB4 metal (Ca(2+) and Mg(2+)) binding states imply a potential connection between the calcium and integrin signaling pathways.  相似文献   

15.
Ca(2+)/calmodulin (Ca(2+)/CaM) and the betagamma subunits of heterotrimeric G-proteins (Gbetagamma) have recently been shown to interact in a mutually exclusive fashion with the intracellular C terminus of the presynaptic metabotropic glutamate receptor 7 (mGluR 7). Here, we further characterized the core CaM and Gbetagamma binding sequences. In contrast to a previous report, we find that the CaM binding motif localized in the N-terminal region of the cytoplasmic tail domain of mGluR 7 is conserved in the related group III mGluRs 4A and 8 and allows these receptors to also bind Ca(2+)/CaM. Mutational analysis of the Ca(2+)/CaM binding motif is consistent with group III receptors containing a conventional CaM binding site formed by an amphipathic alpha-helix. Substitutions adjacent to the core CaM target sequence selectively prevent Gbetagamma binding, suggesting that the CaM-dependent regulation of signal transduction involves determinants that overlap with but are different from those mediating Gbetagamma recruitment. In addition, we present evidence that Gbetagamma uses distinct nonoverlapping interfaces for interaction with the mGluR 7 C-terminal tail and the effector enzyme adenylyl cyclase II, respectively. Although Gbetagamma-mediated signaling is abolished in receptors lacking the core CaM binding sequence, alpha subunit activation, as assayed by agonist-dependent GTPgammaS binding, was not affected. This suggests that Ca(2+)/CaM may alter the mode of group III mGluR signaling from mono- (alpha) to bidirectional (alpha and betagamma) activation of downstream effector cascades.  相似文献   

16.
The Homology module within Insight-II was used to model residues 374–420, sequences missing in the coordinates of resolved structure of the catalytic subunit of calcineurin. The modeling was done in two segments. The calmodulin binding region from residues 389 to 420 was modeled based on the structure of two other proteins having calmodulin binding domains with the same 1-8-14 structural motif as calcineurin. The link region (residues 374–389) between the calmodulin binding region and the solved core sequence was generated as a random loop and two residues at the C-terminal end of the sequence were added to the model using the EndRepair function within Homology. The model was refined using the Discover module of Insight-II with energy minimization. The Builder module was used to merge the modeled regions with the solved structure of calcineurin (residues 14–373). A final refinement step was done for the joined calcineurin model. From the model, it was predicted that the calmodulin and cyclophilin binding regions seem to be proximal. Biochemical experiments provided evidence that cyclosporin-A influenced calmodulin binding and activation of calcineurin consistent with overlapping binding regions.  相似文献   

17.
CIB1 (CIB) is an EF-hand-containing protein that binds multiple effector proteins, including the platelet alphaIIbbeta3 integrin and several serine/threonine kinases and potentially modulates their function. The crystal structure for Ca(2+)-bound CIB1 has been determined at 2.0 A resolution and reveals a compact alpha-helical protein containing four EF-hands, the last two of which bind calcium ions in the standard fashion seen in many other EF-hand proteins. CIB1 shares high structural similarity with calcineurin B and the neuronal calcium sensor (NCS) family of EF-hand-containing proteins. Most importantly, like calcineurin B and NCS proteins, which possess a large hydrophobic pocket necessary for ligand binding, CIB1 contains a hydrophobic pocket that has been implicated in ligand binding by previous mutational analysis. However, unlike several NCS proteins, Ca(2+)-bound CIB1 is largely monomeric whether bound to a relevant peptide ligand or ligand-free. Differences in structure, oligomeric state, and phylogeny define a new family of CIB1-related proteins that extends from arthropods to humans.  相似文献   

18.
LIM proteins contain one or more double zinc finger structures (LIM domains) mediating specific contacts between proteins that participate in the formation of multiprotein complexes. We report that the LIM-only protein DRAL/FHL2, with four and a half LIM domains, can associate with alpha(3A), alpha(3B), alpha(7A), and several beta integrin subunits as shown in yeast two-hybrid assays as well as after overexpression in human cells. The amino acid sequence immediately following the conserved membrane-proximal region in the integrin alpha subunits or the C-terminal region with the conserved NXXY motif of the integrin beta subunits are critical for binding DRAL/FHL2. Furthermore, the DRAL/FHL2 associates with itself and with other molecules that bind to the cytoplasmic domain of integrin alpha subunits. Deletion analysis of DRAL/FHL2 revealed that particular LIM domains or LIM domain combinations bind the different proteins. These results, together with the fact that full-length DRAL/FHL2 is found in cell adhesion complexes, suggest that it is an adaptor/docking protein involved in integrin signaling pathways.  相似文献   

19.
The site in calcineurin, the Ca2+/calmodulin (CaM)-dependent protein phosphatase, which is phosphorylated by Ca2+/CaM-dependent protein kinase II (CaM-kinase II) has been identified. Analyses of 32P release from tryptic and cyanogen bromide peptides derived from [32P]calcineurin plus direct sequence determination established the site as -Arg-Val-Phe-Ser(PO4)-Val-Leu-Arg-, which conformed to the consensus phosphorylation sequence for CaM-kinase II (Arg-X-X-Ser/Thr-). This phosphorylation site is located at the C-terminal boundary of the putative CaM-binding domain in calcinerin (Kincaid, R. L., Nightingale, M. S., and Martin, B. M. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 8983-8987), thereby accounting for the observed inhibition of this phosphorylation when Ca2+/CaM is bound to calcineurin. Since the phosphorylation site sequence also contains elements of the specificity determinants for Ca2+/phospholipid-dependent protein kinase (protein kinase C) (basic residues both N-terminal and C-terminal to Ser/Thr), we tested calcineurin as a substrate for protein kinase C. Protein kinase C catalyzed rapid stoichiometric phosphorylation, and the characteristics of the reaction were the same as with CaM-kinase II: 1) the phosphorylation was blocked by binding of Ca2+/CaM to calcineurin; 2) phosphorylation partially inactivated calcineurin by increasing the Km (from 9.9 +/- 1.1 to 17.5 +/- 1.1 microM 32P-labeled myosin light chain); and 3) [32P]calcineurin exhibited very slow autodephosphorylation but was rapidly dephosphorylated by protein phosphatase IIA. Tryptic and thermolytic 32P-peptide mapping and sequential phosphoamino acid sequence analysis confirmed that protein kinase C and CaM-kinase II phosphorylated the same site.  相似文献   

20.
Li X  Ding J  Liu Y  Brix BJ  Fliegel L 《Biochemistry》2004,43(51):16477-16486
The mammalian Na(+)/H(+) exchanger is a membrane protein with a C-terminal regulatory cytosolic domain and an N-terminal membrane domain. Na(+)/H(+) exchanger isoform 1 (NHE1) possesses a conserved amino acid sequence of seven consecutive acidic residues in the distal region of the cytosolic tail. We examined the structural and functional role of this acidic sequence. In human NHE1, varying mutations of the sequence (753)EEDEDDD(759) resulted in defective NHE1 activity. Mutation of the core acid sequence, (755)DED(757), or of the entire sequence caused a decrease in the activity of NHE1 in response to acute acid load. This was not due to changes in Na(+) affinity but rather due to decreased maximum velocity of the protein and delayed activation. Mutation of the target sequence did not affect the ability of the cytoplasmic domain to bind carbonic anhydrase II or tescalcin but did affect calmodulin binding. Mutation of the acidic domain also caused altered sensitivity to trypsin and changes in size of the protein in gel-filtration chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Our results demonstrate that the acidic sequence is critical in maintaining proper conformation of the cytosolic domain, calmodulin binding, and in maintenance of Na(+)/H(+) exchanger activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号