首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Protein targeting is essential for domain specialization in polarized cells. In photoreceptors, three distinct membrane domains exist in the outer segment: plasma membrane, disk lamella, and disk rim. Peripherin/retinal degeneration slow (rds) and rom-1 are photoreceptor-specific members of the transmembrane 4 superfamily of transmembrane proteins, which participate in disk morphogenesis and localize to rod outer segment (ROS) disk rims. We examined the role of their C termini in targeting by generating transgenic Xenopus laevis expressing green fluorescent protein (GFP) fusion proteins. A GFP fusion containing residues 317-336 of peripherin/rds localized uniformly to disk membranes. A longer fusion (residues 307-346) also localized to the ROS but exhibited higher affinity for disk rims than disk lamella. In contrast, the rom-1 C terminus did not promote ROS localization. The GFP-peripherin/rds fusion proteins did not immunoprecipitate with peripherin/rds or rom-1, suggesting this region does not form intermolecular interactions and is not involved in subunit assembly. Presence of GFP-peripherin/rds fusions correlated with disrupted incisures, disordered ROS tips, and membrane whorls. These abnormalities may reflect competition of the fusion proteins for other proteins that interact with peripherin/rds. This work describes novel roles for the C terminus of peripherin/rds in targeting and maintaining ROS structure and its potential involvement in inherited retinal degenerations.  相似文献   

2.
The open reading frame 4 (ORF 4) gene product of barley yellow dwarf virus (BYDV) may act as a movement protein (MP) by assisting the transport of viral genomic RNA across the nuclear envelope (NE) of host plant cells. To investigate interactions between BYDV MP and the NE, wild-type and mutant open reading frame (ORF 4)-green fluorescent protein (GFP) fusion cistrons were expressed in insect cells. A fusion protein expressed by the wild-type ORF 4-GFP cistron associated with the NE and caused protrusions from its surface. The fusion protein expressed by the mutant ORF 4-GFP cistron lacked a putative amphiphilic alpha-helix at its N-terminus and although associating with the NE, showed decreased levels of protrusions. A peptide homologue of this putative alpha-helix induced an increase of 7 degrees C in the phase transition temperature of dimyrystoyl phosphatidylserine (DMPS) membranes, accompanied by a decrease in membrane fluidity, but exhibited no significant interaction with either dimyristoyl phosphatidylcholine (DMPC) or dimyristoyl phosphatidylethanolamine (DMPE) membranes. These results strongly support the view that BYDV MP may interact with the NE to help transport viral genomic RNA into the nuclear compartment. This function of BYDV MP appears to involve protrusions on the surface of the NE and may require the presence of an N-terminal amphiphilic alpha-helix, which is speculated to destabilize membranes, thereby assisting the entry of BYDV-GAV into the nuclear compartment.  相似文献   

3.
The barley yellow dwarf virus movement protein (BYDV-MP) requires its N-terminal sequence to promote the transport of viral RNA into the nuclear compartment of host plant cells. Here, graphical analysis predicts that this sequence would form a membrane interactive amphiphilic alpha-helix. Confirming this prediction, NT1, a peptide homologue of the BYDV-MP N-terminal sequence, was found to be alpha-helical (65%) in the presence of vesicles mimics of the nuclear membrane. The peptide increased the fluidity of these nuclear membrane mimics (rise in wavenumber of circa 0.5-1.0 cm(-1)) and induced surface pressure changes of 2 mN m(-1) in lipid monolayers with corresponding compositions. Taken with isotherm analysis these results suggest that BYDV-MP forms an N-terminal amphiphilic alpha-helix, which partitions into the nuclear membrane primarily through thermodynamically stable associations with the membrane lipid headgroup region. We speculate that these associations may play a role in targeting of the nuclear membrane by BYDM-MP.  相似文献   

4.
S Takahashi 《Biochemistry》1990,29(26):6257-6264
Fusion of small unilamellar vesicles of egg phosphatidylcholine can be triggered with synthetic 20-residue peptides. Taking the N-terminal amino acid sequence of HA-2 polypeptide of influenza virus as a guideline, we designed and synthesized several peptides having amphiphilic structures. Among the peptides so far studied, those active to induce membrane fusion took an alpha-helical conformation in the presence of phospholipid bilayers, while a peptide which was unable to induce membrane fusion was in a beta-structure. Mixing of a pair of positively and negatively charged peptides, which had a complementary arrangement of electric charges to each other, resulted in alpha-helix formation at neutral pH, the condition of forming a randomly coiled conformation for each peptide. We concluded that alpha-helix formation was one of the necessary conditions to trigger a process of membrane fusion, at least in the present set of peptides. Characteristic features of these amphiphilic peptides are also described.  相似文献   

5.
Inherited defects in the RDS gene cause a multiplicity of progressive retinal diseases in humans. The gene product, peripherin/rds (P/rds), is a member of the tetraspanin protein family required for normal vertebrate photoreceptor outer segment (OS) architecture. Although its molecular function remains uncertain, P/rds has been suggested to catalyze membrane fusion events required for the OS renewal process. This study investigates the importance of two charged residues within a predicted C-terminal helical region for protein biosynthesis, localization, and interaction with model membranes. Targeted mutagenesis was utilized to neutralize charges at Glu(321) and Lys(324) individually and in combination to generate three mutant variants. Studies were conducted on variants expressed as 1) full-length P/rds in COS-1 cells, 2) glutathione S-transferase fusion proteins in Escherichia coli, and 3) membrane-associated green fluorescent protein fusion proteins in transgenic Xenopus laevis. None of the mutations affected biosynthesis of full-length P/rds in COS-1 cells as assessed by Western blotting, sedimentation velocity, and immunofluorescence microscopy. Although all mutations reside within a recently identified localization signal, none altered the ability of this region to direct OS targeting in transgenic X. laevis retinas. In contrast, individual or simultaneous neutralization of the charged amino acids Glu(321) and Lys(324) abolished the ability of the C-terminal domain to promote model membrane fusion as assayed by lipid mixing. These results demonstrate that, although overlapping, C-terminal determinants responsible for OS targeting and fusogenicity are separable and that fusogenic activity has been uncoupled from other protein properties. The observation that subunit assembly and OS targeting can both proceed normally in the absence of fusogenic activity suggests that properly assembled and targeted yet functionally altered proteins could potentially generate pathogenic effects within the vertebrate photoreceptor.  相似文献   

6.
Peripherin/rds is an integral membrane glycoprotein found in the rim regions of vertebrate photoreceptor cell discs. Natural mutations of the encoding gene result in degenerative retinal disorders, such as retinitis pigmentosa. The retinal degeneration slow (rds) phenotype, observed in mice, is considered to be an appropriate model for peripherin/rds-mediated retinitis pigmentosa. Associated abnormalities in the outer segment of photoreceptor cells have implicated peripherin/rds in some aspect of disc morphology, yet it remains unclear whether such morphological effects are the cause or the result of this condition. Here we present the first direct evidence to support a role for peripherin/rds in maintaining the flattened vesicle morphology characteristic of photoreceptor outer segments. In vitro expression yields a 36-kDa immunoreactive species, which is inserted into membranes and undergoes N-glycosylation, inter- and intramolecular disulfide bonding, and dimerization. Electron microscopy reveals that peripherin/rds flattens microsomal vesicles. This effect appears to be dependent on disulfide bond formation but not N-glycosylation. The inability of two pathogenic peripherin/rds mutants (P216L and C165Y) to flatten membrane vesicles implicates such mutations as the primary cause of the retinal degeneration observed in retinitis pigmentosa.  相似文献   

7.
Transgenic Analysis of Rds/Peripherin N-Glycosylation   总被引:1,自引:0,他引:1  
Abstract : Rds/peripherin is an integral membrane glycoprotein that is present in the rims of photoreceptor outer segment disks. In mammals, it is thought to stabilize the disk rim through heterophilic interactions with the related nonglycosylated protein rom1. Glycosylation of rds/peripherin at asparagine 229 is widely conserved in vertebrates. In this study, we investigated the role of rds/peripherin N -glycosylation. We generated transgenic mice that expressed only S231A-substituted rds/peripherin in their retinas. This protein was not glycosylated but formed covalent dimers with itself and with glycosylated rds/peripherin. Nonglycosylated rds/peripherin also interacted noncovalently with rom1 homodimers to form a heterooligomeric complex. The glycosylated rds/peripherin ·· rom1 complex bound to concanavalin A-Sepharose, suggesting that the glycan is not directly involved in the interaction between these proteins. In double transgenic mice expressing normal and S231A-substituted rds/peripherin, the mRNA-to-protein ratios were similar for both transgenes, indicating no effect of N -glycosylation on rds/peripherin stability. Finally, expression of nonglycosylated rds/peripherin in transgenic mice rescued the phenotype of outer segment nondevelopment in retinal degeneration slow (rds-/-) null mutants. These observations indicate that N -glycosylation of rds/peripherin is not required for its normal processing, stability, or in vivo function.  相似文献   

8.
This study reports the isolation and characterization of a Triton X-100-resistant membrane fraction from homogenates of rod outer segment (ROS) disk membranes purified free of the surrounding plasma membrane. A portion of the ROS disk membrane was found to be resistant to Triton X-100 extraction at 4 degrees C. This detergent-resistant fraction was isolated as a low buoyant density band on sucrose density gradients and exhibited an increase in light scattering detected at 600 nm. Biochemical analysis of the Triton X-100-resistant fraction showed it to be enriched in cholesterol and sphingomyelin relative to phospholipid and in phospholipid relative to protein compared with the soluble fraction. The Triton X-100-resistant membranes described herein did not arise simply from partial solubilization of the ROS disk membranes because detergent-treated low buoyant density fractions isolated from homogenates with octyl glucopyranoside had cholesterol and sphingomyelin content indistinguishable from that of solubilized ROS disk homogenates. Analysis of proteins associated with the Triton X-100-resistant fraction showed it to be enriched in the rim-specific protein ROM-1 and caveolin; surprisingly, the fusion protein peripherin/rds (where rds is retinal degeneration slow), also localized to the disk rim, was entirely absent from the membrane raft domain. The lipid profiles of the Triton X-100-resistant membranes were virtually identical in preparations homogenized in either the light or dark. Slightly more ROM-1 was recovered from samples prepared in the light (23%) than from samples prepared in the dark (13%), but peripherin/rds could not be detected in either preparation. When the Triton X-100-resistant membranes were treated with methyl-beta-cyclodextran to deplete membrane cholesterol, the resultant membranes contained slightly lower levels of ROM-1, specifically in the dimeric form. Cholesterol depletion also resulted in the collapse of the large caveolin complex to monomeric caveolae. The results presented herein characterize a pool of ROM-1, a photoreceptor tetraspanin protein, that may play a regulatory role in peripherin/rds-dependent fusion.  相似文献   

9.
T Yoshimura  Y Goto  S Aimoto 《Biochemistry》1992,31(26):6119-6126
A model peptide with 51 amino acid residues consisting of tandem repeats of a Lys-Lys-Leu-Leu sequence and a turn sequence of Asn-Pro-Gly at the center of the molecule has a random conformation at neutral pH but adopts an amphiphilic alpha-helical form in the presence of various salts or nucleotides [Goto, Y., & Aimoto, S. (1991) J. Mol. Biol. 218, 387-396; Goto, Y., Okamura, N., & Aimoto, S. (1991) J. Biochem. (Tokyo) 109, 746-750]. The interaction of this model peptide with liposome membranes and the resulting alpha-helical conformational transition and membrane fusion as well as the effect of the nucleotide ATP on these events were examined at neutral pH. The peptide associated stoichiometrically with liposome membranes composed of phosphatidylserine (PS) and phosphatidylcholine (PC) in a molar ratio of 2:1, resulting in formation of an amphiphilic alpha-helix and induction of fusion of the liposomes. However, the final fusion level was not correlated with the amount of binding or the helix content and was found to increase on an increase in hydrophobicity of the peptide in the alpha-helical form by neutralization of its positive charges by the negative charges of PS. In contrast, in the presence of ATP, the peptide bound completely to the PS/PC membranes at a lower concentration of liposome and concomitantly induced membrane fusion, indicating that ATP cooperates with PS to neutralize the charges of the peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Theoretical analysis indicates that peptide VP1 forms a membrane interactive amphiphilic alpha-helix with antibacterial properties. Fourier transform infra-red based analyses showed VP1 to be alpha-helical (45%) in the presence of vesicle mimics of membranes from Staphylococcus aureus and to induce increases in the fluidity of these vesicles, as indicated by a rise in wavenumber of circa 0.5 to 1.0 cm(-1). The peptide induced surface pressure increases of 5 mN m(-1) in monolayer mimics of S. aureus membranes confirm the formation of a membrane interactive alpha-helix. These interactions appeared to involve significant hydrophobic and electrostatic contributions as VP1 induced comparable surface pressure changes in anionic (5.5 mN m(-1)) and zwitterionic (4 mN m(-1)) lipid monolayers. It is suggested that whilst efficacy requires further sequence specific information, the peptides generic structure provides the basis for its broad antimicrobial activity.  相似文献   

11.
The outer segments of vertebrate rod photoreceptor cells consist of an ordered stack of membrane disks, which, except for a few nascent disks at the base of the outer segment, is surrounded by a separate plasma membrane. Previous studies indicate that the protein, peripherin or peripherin/rds, is localized along the rim of mature disks of rod outer segments. A mutation in the gene for this protein has been reported to be responsible for retinal degeneration in the rds mouse. In the present study, we have shown by immunogold labeling of rat and ground squirrel retinas that peripherin/rds is present in the disk rims of cone outer segments as well as rod outer segments. Additionally, in the basal regions of rod and cone outer segments, where disk morphogenesis occurs, we have found that the distribution of peripherin/rds is restricted to a region that is adjacent to the cilium. Extension of its distribution from the cilium coincides with the formation of the disk rim. These results support the model of disk membrane morphogenesis that predicts rim formation to be a second stage of growth, after the first stage in which the ciliary plasma membrane evaginates to form open nascent disks. The results also indicate how the proteins of the outer segment plasma membrane and the disk membranes are sorted into their separate domains: different sets of proteins may be incorporated into membrane outgrowths during different growth stages of disk morphogenesis. Finally, the presence of peripherin/rds protein in both cone and rod outer segment disks, together with the phenotype of the rds mouse, which is characterized by the failure of both rod and cone outer segment formation, suggest that the same rds gene is expressed in both types of photoreceptor cells.  相似文献   

12.
Peripherin/rds is an integral membrane protein required for the elaboration of rod and cone photoreceptor outer segments in the vertebrate retina; it causes a surprising variety of progressive retinal degenerations in humans and dysmorphic photoreceptors in murine models if defective or absent. (Peripherin/rds is also known as photoreceptor peripherin, peripherin/rds, rds/peripherin, rds, and peripherin-2.) Peripherin/rds appears to act as a structural element in outer segment architecture. However, neither its function at the molecular level nor its role in retinal disease processes are well understood. This report initiates a systematic investigation of protein domain structure and function by examining the molecular and cellular consequences of a series of 14 insertional mutations distributed throughout the polypeptide sequence. Protein expression, disulfide bonding, sedimentation velocity, and subcellular localization of the COS-1 cell-expressed mutant variants were examined to test the hypothesis that protein folding and tetrameric subunit assembly are mediated primarily by EC2, a conserved extracellular/intradiskal domain. Protein folding and tetrameric subunit assembly were not affected by insertion of either an uncharged dipeptide (GA) or a highly charged hendecapeptide (GDYKDDDDKAA) into any one of nine sites residing outside of EC2 as assayed by nonreducing Western blot analysis, sedimentation velocity, and subcellular localization. In contrast, insertions at five positions within the EC2 domain did cause either gross protein misfolding (two sites) or a reduction in protein sedimentation coefficient (two sites) or both (one site). These results indicate that although the vast majority of extramembranous polypeptide sequence makes no measurable contribution to protein folding and tetramerization, discrete regions within the EC2 domain do contain determinants for normal subunit assembly. These findings raise the possibility that multiple classes of structural perturbation are produced by inherited defects in peripherin/rds and contribute to the observed heterogeneity of retinal disease phenotypes.  相似文献   

13.
Peripherin-2 (also known as peripherin/rds), a photoreceptor specific tetraspanin protein, is required to maintain normal cell structure through its role in renewal processes requiring membrane fusion. It is the first tetraspanin fusogen and has been shown to directly mediate fusion between disk membranes and opposing membranes to maintain the highly ordered structure of rod outer segments. Localized to the C terminus of human, bovine, and murine peripherin-2 is an amphiphilic fusion peptide domain (residues 312-326) and a highly conserved region upstream of this domain that we hypothesize is essential for fusogenic function. Our previous studies indicated that substitution of a threonine for a proline at position 296 within this highly conserved region enhanced fusion activity. In this study we wanted to determine whether this proline is essential with the introduction of three additional substitutions of proline with alanine, leucine, and glutamic acid. Wild type, P296T, P296A, P296L, and P296E mutants of peripherin-2 were expressed as His6-tagged full-length proteins in Madin-Darby canine kidney (MDCK) cells. All of the proteins were localized to intracellular membranes and detected as 42-kDa monomers by Western blot analysis. The wild type, P296A, and P296L assembled into core tetramers; in contrast the P296T and P296E formed higher order oligomers. Fusogenic activity of full-length protein expressed in MDCK membranes and purified protein reconstituted in model membrane liposomes was determined using fluorescence quenching techniques. Fusion activity was decreased in the P296L, P296A, and P296E mutants both in endogenous MDCK membranes and in model liposomes. Collectively, these results suggest that the proline at position 296 is necessary for optimal function.  相似文献   

14.
Synthetic amphiphilic alpha-helix peptides were found to bind to stabilize double or triple stranded DNA. The stabilization effect was significant for cationic alpha-helix peptides which indicated the importance of electrostatic interaction of positive charge of peptide and negative charge of DNA. It should be also pointed out that hybrid double or triple helical complexes containing phosphorothioate oligonucleotide were stabilized to a larger extent respect to phosphodiester oligonucleotides. Since it was shown that cationic amphiphilic alpha-helix peptide accelerate membrane permeability of DNA, the present study can provide a solution for the problems of antisense or triplex oligonucleotide in their practical application.  相似文献   

15.
Entry of herpes simplex virus 1 (HSV-1) into cells occurs by fusion with cell membranes; it requires gD as the receptor binding glycoprotein and the trigger of fusion, and the trio of the conserved glycoproteins gB, gH, and gL to execute fusion. Recently, we reported that the ectodomain of HSV-1 gH carries a hydrophobic alpha-helix (residues 377 to 397) with attributes of an internal fusion peptide (T. Gianni, P. L. Martelli, R. Casadio, and G. Campadelli-Fiume, J. Virol. 79:2931-2940, 2005). Downstream of this alpha-helix, a heptad repeat (HR) with a high propensity to form a coiled coil was predicted between residues 443 and 471 and was designated HR-1. The simultaneous substitution of two amino acids in HR-1 (E450G and L453A), predicted to abolish the coiled coil, abolished the ability of gH to complement the infectivity of a gH-null HSV mutant. When coexpressed with gB, gD, and gL, the mutant gH was unable to promote cell-cell fusion. These defects were not attributed to a defect in heterodimer formation with gL, the gH chaperone, or in trafficking to the plasma membrane. A 25-amino-acid synthetic peptide with the sequence of HR-1 (pep-gH(wt25)) inhibited HSV replication if present at the time of virus entry into the cell. A scrambled peptide had no effect. The effect was specific, as pep-gH(wt25) did not reduce HSV-2 and pseudorabies virus infection. The presence of a functional HR in the HSV-1 gH ectodomain strengthens the view that gH has attributes typical of a viral fusion glycoprotein.  相似文献   

16.
The N-terminal fusion peptide of Sendai virus F1 envelope glycoprotein is a stretch of 14 amino acids, most of which are hydrophobic. Following this region, we detected a segment of 11 residues that are strikingly similar to the N-terminal fusion peptide. We found that, when anchored to the membrane by palmitoylation of its N-terminus, this segment (WT-palm-19-33) induces membrane fusion of large unilamellar liposomes to almost the same extent as a segment that includes the N-terminal fusion peptide. The activity of WT-palm-19-33 was dependent on its specific sequence, as a palmitoylated peptide with the same amino-acid composition but a scrambled sequence was inactive. Interestingly, two mutations (G7A and G12A) known to increase F1- induced cell-cell fusion, also increased the homology between the N-terminal fusion peptide and WT-palm-19-33. The role of the amino-acid sequence on the fusogenicity, secondary structure, and mechanism of membrane fusion was analyzed by comparing a peptide comprising both homologous segments (WT 1-33), a G12A mutant (G12A 1-33), a G7A-G12A double mutant (G7A-G12A 1-33), and a peptide with a scrambled sequence (SC 1-33). Based on these experiments, we postulate that replacement of Gly 7 and Gly12 by Ala increases the alpha helical content of the N-terminal region, with a concomitant increase in its fusogenic activity. Furthermore, the dissimilar abilities of the different peptides to induce membrane negative curvature as well as to promote isotropic 31P NMR signals, suggest that these mutations might also alter the extent of membrane penetration of the 33-residue peptide. Interestingly, our results serve to explain the effect of the G7A and G12A mutations on the fusogenic activity of the parent F1 protein in vivo.  相似文献   

17.
Membrane binding via C-terminal amphiphilic alpha-helical structure is a novel anchoring mechanism, which has been characterised in a number of prokaryotic carboxypeptidases. Here, we have used graphical and DWIH analyses to ascertain if a similar anchoring mechanism may be utilised by the Escherichia coli KpsE protein in its binding to the periplasmic face of the inner membrane. The results of these analyses have been compared to those obtained for similar analyses of the C-terminal sequences of E. coli penicillin-binding proteins (PBPs) PBP5 and PBP6 which, are known to function as amphiphilic alpha-helical membrane anchors, and of melittin, a known membrane-interactive toxin. We have also used FTIR spectroscopy and lipid phase transition temperature analysis to investigate the interaction of a peptide homologue of KpsE C-terminal region with membrane lipid. Our results suggest that the KpsE C-terminal sequence has the potential to form an amphiphilic alpha-helix and that this alpha-helix could feature in the membrane binding of the protein.  相似文献   

18.
We previously reported that the 18-mer amphiphilic alpha-helical peptide, Hel 13-5, consisting of 13 hydrophobic residues and five hydrophilic amino acid residues, can induce neutral liposomes (egg yolk phosphatidylcholine) to adopt long nanotubular structures and that the interaction of specific peptides with specific phospholipid mixtures induces the formation of membrane structures resembling cellular organelles such as the Golgi apparatus. In the present study we focused our attention on the effects of peptide sequence and chain length on the nanotubule formation occurring in mixture systems of Hel 13-5 and various neutral and acidic lipid species by means of turbidity measurements, dynamic light scattering measurements, and electron microscopy. We designed and synthesized two sets of Hel 13-5 related peptides: 1) Five peptides to examine the role of hydrophobic or hydrophilic residues in amphiphilic alpha-helical structures, and 2) Six peptides to examine the role of peptide length, having even number residues from 12 to 24. Conformational, solution, and morphological studies showed that the amphiphilic alpha-helical structure and the peptide chain length (especially 18 amino acid residues) are critical determinants of very long tubular structures. A mixture of alpha-helix and beta-structures determines the tubular shapes and assemblies. However, we found that the charged Lys residues comprising the hydrophilic regions of amphiphilic structures can be replaced by Arg or Glu residues without a loss of tubular structures. This suggests that the mechanism of microtubule formation does not involve the charge interaction. The immersion of the hydrophobic part of the amphiphilic peptides into liposomes initially forms elliptic-like structures due to the fusion of small liposomes, which is followed by a transformation into tubular structures of various sizes and shapes.  相似文献   

19.
Mice homozygous for the retinal degeneration slow (rds) mutation completely lack photoreceptor outer segments. The rds gene encodes rds/peripherin (rds), a membrane glycoprotein in the rims of rod and cone outer segment discs. rds is present as a complex with the related protein, rom1. Here, we generated transgenic mice that express a chimeric protein (rom/D2) containing the intradiscal D2 loop of rds in the context of rom1. rom/D2 was N-glycosylated, formed covalent homodimers, and interacted non-covalently with itself, rds, and rom1. The rds.rom/D2 interaction was significantly more stable than the non-covalent interaction between rds and rom1 by detergent/urea titration. Analysis of mice expressing rom/D2 revealed that rds is 2.5-fold more abundant than rom1, interacts non-covalently with itself and rom1 via the D2 loop, and forms a high order complex that may extend the entire circumference of the disc. Expression of rom/D2 fully rescued the ultrastructural phenotype in rds+/- mutant mice, but it had no effect on the phenotype in rds-/- mutants. Together, these observations explain the striking differences in null phenotypes and frequencies of disease-causing mutations between the RDS and ROM1 genes.  相似文献   

20.
The mechanism of protein-mediated membrane fusion and lysis has been investigated by solution-state studies of the effects of peptides on liposomes. A peptide (SI) corresponding to a highly amphiphilic C-terminal segment from the envelope protein (gp41) of the human immunodeficiency virus (HIV) was synthesized and tested for its ability to cause lipid membranes to fuse together (fusion) or to break open (lysis). These effects were compared to those produced by the lytic and fusogenic peptide from bee venom, melittin. Other properties studied included the changes in visible absorbance and mean particle size, and the secondary structure of peptides as judged by CD spectroscopy. Taken together, the observations suggest that protein-mediated membrane fusion is dependent not only on hydrophobic and electrostatic forces but also on the spatial arrangement of the amino acid residues to form an amphiphilic structure that promotes the mixing of the lipids between membranes. A speculative molecular model is proposed for membrane fusion by alpha-helical peptides, and its relationship to the forces involved in protein-membrane interactions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号