首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barium ions enter chromaffin cells via voltage-sensitive calcium channels, although the intracellular site of barium action is distinct from that of calcium. The entry of barium primarily through voltage-sensitive channels was indicated by experiments showing inhibition of 133Ba2+ uptake by blockers of voltage-dependent calcium channels. In addition, 133Ba2+ uptake was stimulated by 50 mM KCl but not by nicotine. Furthermore, 133Ba2+ uptake was inhibited by hyperosmolarity, which specifically blocks the voltage-sensitive calcium channel but not the receptor-associated calcium channel. These conclusions from studies on barium uptake were also borne out by experiments measuring catecholamine secretion. Thus, blockers of voltage-dependent calcium channels which inhibited barium uptake also inhibited barium-induced catecholamine secretion. In other experiments, simultaneous stimulation with nicotine and barium in the presence of calcium evoked coincident and additive catecholamine secretion. By contrast, when 50 mM KCl was substituted for nicotine in the same experimental design, barium ions inhibited potassium-induced catecholamine secretion at low calcium concentrations. Only at high calcium concentrations were barium-induced and potassium-induced secretion additive. These data also indicate that barium and calcium compete at the voltage-sensitive pathway. Furthermore, these additivity data suggest that once inside the cell, barium and calcium have two distinct mechanisms of action. As predicted by this hypothesis, in digitonin-permeabilized chromaffin cells either calcium or barium stimulated catecholamine release, and in the presence of both cations catecholamine secretion was equivalent to the sum of secretion with either cation alone. Additional support of this concept comes from experiments showing that while calcium-mediated catecholamine secretion is sensitive to trifluoperazine and imipramine, barium-mediated secretion is not. Taken together, all these data indicate that there are two distinct intracellular sites of action for barium and calcium. In contrast to catecholamine secretion, non-exocytotic ascorbic acid secretion was induced by nicotine and potassium in the presence of calcium, but not by barium alone. These data provide additional evidence that barium acts by a different mechanism than calcium, in still another secretory system in chromaffin cells.  相似文献   

2.
Treatment of permeabilized chromaffin cells with low concentrations of the ATP analog adenosine-5′-O-(3-thiotriphosphate)[35S] results in 35S incorporation into a small number of cellular proteins. Of these proteins, a 47 kilodalton protein is most heavily thiophosphorylated. Permeabilized cells were treated with various drugs known to influence cell functions, more specifically chromaffin granule function, to determine the kinase responsible for thiophosphorylation of the 47 kilodalton protein and if its thiophosphorylation is associated with a specific cell function.

Several drugs which influence the activity of cell kinases were examined for their effect on secretion and thiophosphorylation of the 47 kilodalton protein. There was no qualitative effect of cAMP, cGMP or trifluoperazine on thiophosphorylation of the protein. Both cyclic nucleotides slightly enhanced secretion, while trifluoperazine enhanced only unstimulated catecholamine release. Phorbol 12-myristate 13-acetate had no effect on secretion or 35S incorporation into cell proteins. Only the free calcium concentration of the medium influenced thiophosphorylation of the 47 kilodalton protein, with increased calcium producing increased thiophosphorylation.

Drugs affecting chromaffin vesicle functions were used to assess the relationship between specific functions and thiophosphorylation of the protein. Inhibition of nucleotide translocation with atractyloside or 4,4′diisothiocyanatostilbene-2,2′disulfonic acid or inhibition of the proton translocating ATPase by N-ethylmaleimide inhibited thiophosphorylation of the 47 kilodalton protein, with little effect on secretion. Treatment with rotenone markedly enhanced secretion and thiophosphorylation of the protein. Calcium ionophores had no effect on thiophosphorylation of the protein. Dichloroacetic acid, which inhibits phosphorylation of mitochondrial pyruvate dehydrogenase, had no effect on secretion and a variable effect on thiophosphorylation of the 47 kilodalton protein. The data suggest that thiophosphorylation of the protein may be associated with nucleotide translocation across the vesicle membrane.  相似文献   


3.
We have reported recently that prostaglandin E2 (PGE2) stimulated phosphoinositide metabolism in bovine adrenal chromaffin cells and that PGE2 and ouabain, an inhibitor of Na+, K(+)-ATPase, synergistically induced a gradual secretion of catecholamines from the cells. Here we examined the involvement of a GTP-binding protein(s) in PGE receptor-induced responses by using NaF. In the presence of Ca2+ in the medium, NaF stimulated the formation of all three inositol phosphates, i.e., inositol monophosphate, bisphosphate, and trisphosphate, linearly over 30 min in a dose-dependent manner (15-30 mM). This effect on phosphoinositide metabolism was accompanied by an increase in cytosolic free Ca2+. NaF also induced catecholamine release from chromaffin cells, and the dependency of stimulation of the release on NaF concentration was well correlated with those of NaF-enhanced inositol phosphate formation and increase in cytosolic free Ca2+. Although the effect of NaF on PGE2-induced catecholamine release in the presence of ouabain was additive at concentrations below 20 mM, there was no additive effect at 25 mM NaF. Furthermore, the time course of catecholamine release stimulated by 20 mM NaF in the presence of ouabain was quite similar to that by 1 microM PGE2, and both stimulations were markedly inhibited by amiloride, with half-maximal inhibition at 10 microM. Pretreatment of the cells with pertussis toxin did not prevent, but rather enhanced, PGE2-induced catecholamine release over the range of concentrations examined. These results demonstrate that NaF mimics the effect of PGE2 on catecholamine release from chromaffin cells and suggest that PGE2-evoked catecholamine release may be mediated by the stimulation of phosphoinositide metabolism through a putative GTP-binding protein insensitive to pertussis toxin.  相似文献   

4.
Ca2+-dependent protein phosphorylation was studied in intact hamster insulinoma cells. Depolarizing concentrations of potassium which stimulate Ca2+ uptake and insulin release by these cells also increased phosphorylation of one peptide, Mr = 60,000 (P60). This was demonstrated by incubating 32P-labeled insulinoma cells in media containing 50 mM K+ followed by analysis of the cellular proteins by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis and autoradiography. Potassium-induced phosphorylation of P60 was nearly half-maximal after 1 min and reached a plateau by 10 min. The enhanced 32P-labeling of P60 observed in the presence of 50 mM K+ was Ca2+-dependent since omission of extracellular Ca2+ or addition of the Ca2+ channel blocker alpha-isopropyl-alpha-[(N-methyl-N-homoveratryl)-gamma-aminopropyl]3,4,5-trimethoxyphenylacetonitrile hydrochloride prevented the effect. Glucagon (3 microM), which stimulates insulin release in a cAMP-dependent manner, had no effect on P60 phosphorylation. A possible involvement of calmodulin was explored in studies using trifluoperazine. The Ca2+-dependent increase in phosphorylation of P60 was prevented by trifluoperazine. Moreover, Ca2+ influx-mediated insulin release and P60 phosphorylation were inhibited at nearly identical concentrations of trifluoperazine. Half-maximal inhibition of potassium-induced insulin release and P60 phosphorylation was seen at 2.6 microM and 2.5 microM trifluoperazine, respectively. The data are consistent with a sequence of events involving Ca2+ influx, phosphorylation of P60 by a calmodulin-dependent protein kinase, and resultant insulin secretion.  相似文献   

5.
Cultured chromaffin cells were preincubated with digitonin to deplete endogenous ATP from the cell cytoplasm. Catecholamine release from these digitonin-pretreated cells was then studied in the presence and absence of exogenous ATP to elucidate a possible involvement of the cytoplasmic ATP in the exocytotic process. The preincubation of the cells with digitonin in the ATP-free permeabilizing medium resulted in a marked decline of the releasing response to a calcium challenge. Furthermore, the declined activity of catecholamine release caused by digitonin pretreatment was restored by the presence of ATP, but not by other adenine nucleotides, and this recovery was observed in a manner dependent on the concentration of ATP. These findings, therefore, seem to indicate that a decrease in the releasing activity of the digitonin-pretreated cells may be due to the removal of endogenous ATP from the cytoplasmic space of the cells, thus suggesting that the cytoplasmic ATP may be involved in the exocytotic mechanism of catecholamine secretion.  相似文献   

6.
Digitonin permeabilizes the plasma membranes of bovine chromaffin cells to Ca2+, ATP, and proteins and allows micromolar Ca2+ in the medium to stimulate directly catecholamine secretion. In the present study the effects of digitonin (20 microM) on the plasma membrane and on intracellular chromaffin granules were further characterized. Cells with surface membrane labeled with [3H]galactosyl moieties retained label during incubation with digitonin. The inability of digitonin-treated cells to shrink in hyperosmotic solutions of various compositions indicated that tetrasaccharides and smaller molecules freely entered the cells. ATP stimulated [3H]norepinephrine uptake into digitonin-treated chromaffin cells fivefold. The stimulated [3H]norepinephrine uptake was inhibited by 1 microM reserpine, 30 microM NH4+, or 1 microM carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). The data indicate that [3H]norepinephrine was taken up into the intracellular storage granules by the ATP-induced H+ electrochemical gradient across the granule membrane. Reduction of the medium osmolality from 310 mOs to 100 mOs was required to release approximately 50% of the catecholamine from chromaffin granules with digitonin-treated chromaffin cells which indicates a similar osmotic stability to that in intact cells. Chromaffin granules in vitro lost catecholamine when the digitonin concentration was 3 microM or greater. Catecholamine released into the medium by micromolar Ca2+ from digitonin-treated chromaffin cells that had subsequently been washed free of digitonin could not be pelleted in the centrifuge and was not accompanied by release of membrane-bound dopamine-beta-hydroxylase. The studies demonstrate that 20 microM of digitonin caused profound changes in the chromaffin cell plasma membrane permeability but had little effect on intracellular chromaffin granule stability and function. It is likely that the intracellular chromaffin granules were not directly exposed to significant concentrations of digitonin. Furthermore, the data indicate that during catecholamine release induced by micromolar Ca2+, the granule membrane was retained by the cells and that catecholamine release did not result from release of intact granules into the extracellular medium.  相似文献   

7.
Abstract: In isolated adrenal medullary cells, carbamyl-choline and high K+ cause the calcium-dependent secretion of catecholamines with a simultaneous increase in the synthesis of 14C-catecholamines from [14C]tyrosine. In these cells, trifluoperazine, a selective antagonist of calmodulin, inhibited both the secretion and synthesis of catecholamines. The stimulatory effect of carbamyl-choline was inhibited to a greater extent than that of high K+. The inhibitory effect of trifluoperazine on carbamylcholine-evoked secretion of catecholamines was not overcome by an increase in either carbamylcholine or calcium concentration, showing that inhibition by trifluoperazine occurs by a mechanism distinct from competitive antagonism at the cholinergic receptor and from direct inactivation of calcium channels. Doses of trifluoperazine that inhibited catecholamine secretion and synthesis also inhibited the uptake of radioactive calcium by the cells. These results suggest that trifluoperazine inhibits the secretion and synthesis of catecholamines mainly due to its inhibition of calcium uptake. Trifluoperazine seems to inhibit calcium uptake by uncoupling the linkage between cholinergic receptor stimulation and calcium channel activation.  相似文献   

8.
The relationship between catecholamine secretion and arachidonic acid release from digitonin-treated chromaffin cells was investigated. Digitonin renders permeable the plasma membranes of bovine adrenal chromaffin cells to Ca2+, ATP, and proteins. Digitonin-treated cells undergo exocytosis of catecholamine in response to micromolar Ca2+ in the medium. The addition of micromolar Ca2+ to digitonin-treated chromaffin cells that had been prelabeled with [3H]arachidonic acid caused a marked increase in the release of [3H]arachidonic acid. The time course of [3H]arachidonic acid release paralleled catecholamine secretion. Although [3H]arachidonic acid release and exocytosis were both activated by free Ca2+ in the micromolar range, the activation of [3H]arachidonic acid release occurred at Ca2+ concentrations slightly lower than those required to activate exocytosis. Pretreatment of the chromaffin cells with N-ethylmaleimide (NEM) or p-bromophenacyl bromide (BPB) resulted in dose-dependent inhibition of 10 microM Ca2+-stimulated [3H]arachidonic acid release and exocytosis. The IC50 of NEM for both [3H]arachidonic acid release and exocytosis was 40 microM. The IC50 of BPB for both events was 25 microM. High concentrations (5-20 mM) of Mg2+ caused inhibition of catecholamine secretion without altering [3H]arachidonic acid release. A phorbol ester that activates protein kinase C, 12-O-tetradecanoylphorbol-13-acetate (TPA), caused enhancement of both [3H]arachidonic acid release and exocytosis. The findings demonstrate that [3H]arachidonic acid release is stimulated during catecholamine secretion from digitonin-treated chromaffin cells and they are consistent with a role for phospholipase A2 in exocytosis from chromaffin cells. Furthermore the data suggest that protein kinase C can modulate both arachidonic acid release and exocytosis.  相似文献   

9.
Lead buffers (citrate and Tiron) were used to investigate the effects of low concentrations (0.1-6 microM) of Pb2+ on stimulus-secretion coupling in isolated bovine chromaffin cells. Nicotinic agonists and high K elicit secretion by enhancing Ca2+ influx into chromaffin cells. Pb2+ inhibited the catecholamine secretion in response to 500 microM carbachol and 77 mM K+ depolarization but was without significant effect on basal secretion. Pb2+ also inhibited the influx of 45Ca occurring in response to these agents. The K0.5 values for inhibition suggest that the carbachol-evoked flux is more sensitive to Pb2+ than influx in response to a direct depolarization. When extracellular calcium was lowered in the absence of Pb2+, both secretion and 45Ca entry were reduced. The effects of Pb2+ were comparable to those of lowered Ca2+. 22Na influx through nicotinic receptor-mediated channels, measured in the presence of tetrodotoxin (2 microM) and ouabain (50 microM), was inhibited by Pb2+. The results suggest that Pb2+ inhibits exocytotic catecholamine secretion by inhibiting Ca2+ influx. The differential sensitivity to Pb2+ of K- and carbachol-evoked 45Ca flux, coupled with the 22Na measurements, indicates that Pb2+ inhibits the movement of ions through acetylcholine-induced channels as well as through voltage-sensitive calcium channels.  相似文献   

10.
Trypanosoma cruzi epimastigotes maintained an intracellular free calcium concentration of about 0.15 microM, as measured with the fluorescent indicator Fura-2. The maintenance of low [Ca2+]i is energy-dependent since it is disrupted by KCN and FCCP. When the cells were permeabilized with digitonin, the steady-state free Ca2+ concentration in the absence of ATP was about 0.7 microM. The additional presence of ATP resulted in a steady-state level close to 0.1-0.2 microM which compares favorably with the concentration detected in intact cells. Intracellular Ca2+ uptake at high levels of free Ca2+ (greater than 1 microM) was due to energy-dependent mitochondrial uptake as indicated by its FCCP-sensitivity. However, as the free Ca2+ concentration was lowered from 1 microM, essentially all uptake was due to the ATP-dependent Ca2+ sequestration by the endoplasmic reticulum as indicated by its stimulation by ATP, and its inhibition by sodium vanadate. High concentrations of the calmodulin antagonist trifluoperazine, inhibited both the Ca2+ uptake by the endoplasmic reticulum and by the mitochondria, while calmidazolium released Ca2+ from both compartments. In addition, trifluoperazine and calmidazolium inhibited respiration and collapsed the mitochondrial membrane potential of T. cruzi, thus indicating non-specific effects unrelated to calmodulin.  相似文献   

11.
Scallop striated adductor muscle myosin is a regulatory myosin, its activity being controlled directly through calcium binding. Here, we show that millimolar concentrations of trifluoperazine were effective at removal of all regulatory light chains from scallop myosin or myofibrils. More important, 200 microM trifluoperazine, a concentration 10-fold less than that required for light-chain removal, resulted in the reversible elimination of actin-activated and intrinsic ATPase activities. Unlike desensitization induced by metal ion chelation, which leads to an elevation of activity in the absence of calcium concurrent with regulatory light-chain removal, trifluoperazine caused a decline in actin-activated MgATPase activity both in the presence and absence of calcium. Procedures were equally effective with respect to scallop myosin, myofibrils, subfragment-1, or desensitized myofibrils. Increased alpha-helicity could be induced in the isolated essential light chain through addition of 100-200 microM trifluoperazine. We propose that micromolar concentrations of trifluoperazine disrupt regulation by binding to a single high-affinity site located in the C-terminal domain of the essential light chain, which locks scallop myosin in a conformation resembling the off-state. At millimolar trifluoperazine concentrations, additional binding sites on both light chains would be filled, leading to regulatory light-chain displacement.  相似文献   

12.
It had previously been thought that muscarinic cholinergic receptors utilize an influx of extracellular calcium for activation of adrenomedullary catecholamine secretion. However, it has recently been demonstrated that muscarinic receptors on isolated adrenal chromaffin cells can elevate cytosolic free calcium levels in a manner independent of extracellular calcium, presumably by mobilizing intracellular calcium stores. We now demonstrate that muscarinic receptor-mediated catecholamine secretion from perfused rat adrenal glands can occur under conditions of extracellular calcium deprivation that are sufficient to block both nicotine- and electrically stimulated release. Three independent conditions of extracellular calcium deprivation were used: nominally calcium-free perfusion solution (no calcium added), EGTA-containing calcium-free perfusion solution, and perfusion solution containing the calcium channel blocker verapamil. Secretion was evoked from the perfused glands by either transmural electrical stimulation or injection of nicotine or muscarine into the perfusion stream. Each condition of calcium deprivation was able to block nicotine- and electrically stimulated catecholamine release in an interval that left muscarine-evoked release largely unaffected. The above results demonstrate that muscarine-evoked catecholamine secretion from perfused rat adrenal glands can occur in the absence of extracellular calcium, presumably by mobilization of intracellular calcium. The latter may be due to muscarinic receptor-mediated generation of inositol trisphosphate.  相似文献   

13.
Calcium release from isolated heavy sarcoplasmic reticulum of rabbit skeletal muscle by several calmodulin antagonistic drugs was measured spectrophotometrically with arsenazo III and compared with the properties of the caffeine-induced calcium release. Trifluoperazine and W7 (about 500 microM) released all actively accumulated calcium (half-maximum release at 129 microM and 98 microM, respectively) in the presence 0.5 mM MgCl2 and 1 mg/ml sarcoplasmic reticulum protein; calmidazolium (100 microM) and compound 48/80 (70 micrograms/ml) released maximally 30-40% calcium, whilst bepridil (100 microM) and felodipin (50 microM) with calmodulin antagonistic strength similar to trifluoperazine (determined by inhibition of the calcium, calmodulin-dependent protein kinase of cardiac sarcoplasmic reticulum) did not cause a detectable calcium release, indicating that this drug-induced calcium release is not due to the calmodulin antagonistic properties of the tested drugs. Calcium release of trifluoperazine, W7 and compound 48/80 and that of caffeine was inhibited by similar concentrations of magnesium (half-inhibition 1.4-4.2 mM compared with 0.97 mM for caffeine) and ruthenium red (half-inhibition for trifluoperazine, W7 and compound 48/80 was 0.22 microM, 0.08 microM and 0.63 micrograms/ml, respectively, compared with 0.13 microM for caffeine), suggesting that this drug-induced calcium release occurs via the calcium-gated calcium channel of sarcoplasmic reticulum stimulated by caffeine or channels with similar properties.  相似文献   

14.
PC12 cells, a cloned rat pheochromocytoma cell line, were treated with digitonin to render the plasma membrane permeable to ions and proteins. At a cell density of 2-6 X 10(5) cells/cm2, incubation with 7.5 microM digitonin permitted a Ca2+-dependent release of 25-40% of the catecholamine within 18 min in the presence of 10 microM Ca2+. Half-maximal secretion occurred at 0.5-1 microM Ca2+. PC12 cultures at lower cell densities were more sensitive to digitonin and gave more variable results. Secretion in the presence of digitonin and Ca2+ began after a 2-min lag and continued for up to 30 min. When cells were treated for 3 min in digitonin and then stimulated with Ca2+ in the absence of digitonin, secretion occurred in the same manner but without the initial lag. Optimal secretion from PC12 cells was also dependent upon the presence of Mg2+ and ATP. Permeabilized PC12 cells exhibited a slow time-dependent loss of secretory responsiveness which was correlated with the release of a cytosolic marker, lactate dehydrogenase (134 kDa). This suggests that digitonin permeabilization allows soluble constituents necessary for secretion to leave the cell in addition to allowing Ca2+ and ATP access into the cell interior. Ca2+-dependent secretion was completely inhibited by exposure of digitonin-permeabilized cells to 100 micrograms/ml trypsin (27 kDa), whereas secretion was only slightly inhibited by trypsin exposure prior to digitonin treatment. Thus, an intracellular, trypsin-sensitive protein is probably involved in secretion. The data also indicate that the same population of digitonin-treated cells which responded to Ca2+ was permeable to a 27-kDa protein. 1,2-Dioctanoylglycerol and phorbol esters which activate protein kinase C enhanced the Ca2+-dependent and Ca2+-independent secretion in digitonin-permeabilized PC12 cells. Thus, protein kinase C appears to be involved in the regulation of catecholamine secretion from permeabilized PC12 cells.  相似文献   

15.
Effects on insulin release, cyclic AMP content and protein phosphorylation of agents modifying cyclic AMP levels have been tested in intact rat islets of Langerhans. Insulin release induced by glucose was potentiated by dibutyryl cyclic AMP, glucagon, cholera toxin and 3-isobutyl-1-methylxanthine (IBMX); the calmodulin antagonist trifluoperazine reversed these potentiatory effects. Inhibition by trifluoperazine of IBMX-potentiated release was, however, confined to concentrations of IBMX below 50 microM; higher concentrations, up to 1 mM, were resistant to inhibition by trifluoperazine. IBMX-potentiated insulin release was also inhibited by 2-deoxyadenosine, an inhibitor of adenylate cyclase. In the absence of glucose, IBMX at concentrations up to 1 mM did not stimulate insulin release and in the presence of 3.3 mM-glucose IBMX was effective only at a concentration of 1 mM; under the latter conditions trifluoperazine again did not inhibit insulin secretion. The maximum effect on insulin release was achieved with 25 microM-IBMX. Islet [cyclic AMP] was increased by IBMX, with the maximum rise occurring with 100 microM-IBMX. The increase in [cyclic AMP] elicited by IBMX was more rapid than that induced by cholera toxin. Trifluoperazine did not significantly affect islet cyclic AMP levels under any of the conditions tested. When islets were incubated with [32P]Pi, radioactivity was incorporated into islet ATP predominantly in the gamma-position. The rate of equilibration of label was dependent on medium Pi and glucose concentration and at optimal concentrations of these 100% equilibration of internal [32P]ATP with external [32P]Pi required a period of 3h. Radioactivity was incorporated into islet protein and, in response to an increase in islet [cyclic AMP], the major effect was on a protein of Mr 15 000 on sodium dodecyl sulphate/polyacrylamide gels. The extent of phosphorylation of the Mr-15 000 protein was correlated with the level of cyclic AMP: phosphorylation in response to IBMX was inhibited by 2-deoxyadenosine but not by trifluoperazine. Fractionation of islets suggested that the Mr-15 000 protein was of nuclear origin: the protein co-migrated with histone H3 on acetic acid/urea/Triton gels. In the islet cytosol a number of proteins were phosphorylated in response to elevation of islet [cyclic AMP]: the major species had Mr values of 18 000, 25 000, 34 000, 38 000 and 48 000. Culture of islets with IBMX increased the rate of [3H]-thymidine incorporation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Isolated cortices from unfertilized sea urchin eggs sequester calcium in an ATP-dependent manner when incubated in a medium containing free calcium levels characteristic of the resting cell (approximately 0.1 microM). This ATP-dependent calcium uptake activity was measured in the presence of 5 mM Na azide to prevent mitochondrial accumulation, was increased by oxalate, and was blocked by 150 microM quercetin and 50 microM vanadate (known inhibitors of calcium uptake into the sarcoplasmic reticulum). Cortical regions preloaded with 45Ca in the presence of ATP were shown to dramatically increase their rate of calcium efflux upon the addition of (a) the calcium ionophore A23187 (10 microM), (b) trifluoperazine (200 microM), (c) concentrations of free calcium that activated cortical granule exocytosis, and (d) the calcium mobilizing agent inositol trisphosphate. This pool of calcium is most likely sequestered in the portion of the egg's endoplasmic reticulum that remains associated with the cortical region during its isolation. We have developed a method for obtaining a high yield of purified microsomal vesicles from whole eggs. This preparation also demonstrates ATP-dependent calcium sequestering activity which increases in the presence of oxalate and has similar sensitivities to calcium transport inhibitors; however, the isolated microsomal vesicles did not show any detectable release of calcium when exposed to inositol trisphosphate.  相似文献   

17.
The role of protein Kinase C activators in the process of histamine secretion has been studied in rat peritoneal mast cells purified by a density gradient. TPA (12-O-tetradecanoyl-phorbol-13-acetate), a tumor promoter which activates protein kinase C, induced histamine release in the presence and in the absence of external free Ca2+. TPA and the calcium ionophore A23187 have an additive effect on secretion. Histamine release induced by TPA is energy-dependent. In the presence of 100 microM KCN secretion was moderately inhibited, however when glucose was removed from the incubation medium TPA-induced histamine release in the presence of KCN was strongly depressed.  相似文献   

18.
The effect of diethylstilbestrol, a synthetic estrogen, on mast cell secretion was investigated. The results showed that 50 microM diethylstilbestrol inhibited histamine release from rat peritoneal mast cells in the presence and absence of glucose, but did not affect 45Ca uptake stimulated by concanavalin A. Diethylstilbestrol also inhibited histamine release induced by compound 48/80, exogenous ATP, or ionophore A23187. Since estradiol benzoate, hexestrol and daidzein were not inhibitory, the inhibitory action of diethylstilbestrol must be independent of its estrogenic activity. The ATP content of mast cells decreased to less than 0.1 nmol/10(6) cells on treatment with 50 microM diethylstilbestrol at 37 degrees C for 15 min. This effect of diethylstilbestrol in decreasing the ATP content of mast cells correlated well with its inhibitory effect on histamine release. Diethylstilbestrol at 50 microM depleted the cells of ATP at 37 degrees C, but not at 0 degrees C, whereas [3H]diethylstilbestrol ( [monoethyl-3H]diethylstilbestrol) binding to rat mast cells was the same at 0 and 37 degrees C. It is concluded that diethylstilbestrol reduced the ATP content of rat mast cells by inhibiting metabolism of the cells, and consequently inhibited degranulation.  相似文献   

19.
Arginine vasopressin (AVP), bombesin, and ACh increase cytosolic free Ca(2+) and potentiate glucose-induced insulin release by activating receptors linked to phospholipase C (PLC). We examined whether tolbutamide and diazoxide, which close or open ATP-sensitive K(+) channels (K(ATP) channels), respectively, interact with PLC-linked Ca(2+) signals in HIT-T15 and mouse beta-cells and with PLC-linked insulin secretion from HIT-T15 cells. In the presence of glucose, the PLC-linked Ca(2+) signals were enhanced by tolbutamide (3-300 microM) and inhibited by diazoxide (10-100 microM). The effects of tolbutamide and diazoxide on PLC-linked Ca(2+) signaling were mimicked by BAY K 8644 and nifedipine, an activator and inhibitor of L-type voltage-sensitive Ca(2+) channels, respectively. Neither tolbutamide nor diazoxide affected PLC-linked mobilization of internal Ca(2+) or store-operated Ca(2+) influx through non-L-type Ca(2+) channels. In the absence of glucose, PLC-linked Ca(2+) signals were diminished or abolished; this effect could be partly antagonized by tolbutamide. In the presence of glucose, tolbutamide potentiated and diazoxide inhibited AVP- or bombesin-induced insulin secretion from HIT-T15 cells. Nifedipine (10 microM) blocked both the potentiating and inhibitory actions of tolbutamide and diazoxide on AVP-induced insulin release, respectively. In glucose-free medium, AVP-induced insulin release was reduced but was again potentiated by tolbutamide, whereas diazoxide caused no further inhibition. Thus tolbutamide and diazoxide regulate both PLC-linked Ca(2+) signaling and insulin secretion from pancreatic beta-cells by modulating K(ATP) channels, thereby determining voltage-sensitive Ca(2+) influx.  相似文献   

20.
The putative intracellular calcium antagonist 3,4,5-trimethoxybenzoate 8-(diethylamino)-octyl ester (TMB-8) affects carbachol-induced enzyme secretion from rabbit pancreatic acini in a different way than it does that induced by either the C-terminal octapeptide of cholecystokinin (CCK-8), the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA) or the calcium ionophore, A23187. In the presence of TMB-8 the dose-response curve for carbachol-induced amylase release shifts to the right, suggesting competitive antagonism at the muscarinic receptor. The hypothesis that TMB-8 acts as a muscarinic receptor antagonist is supported by the observation that TMB-8 dose-dependently inhibits the carbachol-, but not CCK-8-induced increases in cytosolic free calcium, measured in acinar cells by means of the fluorescent calcium indicator quin2. At a concentration of 100 microM, TMB-8 maximally potentiates the secretory response to suboptimal, but not (supra)optimal, concentrations of CCK-8. At the same concentration the drug also potentiates TPA- and A23187-induced enzyme secretion. Cytosolic free calcium levels and CCK-8-induced increases in cytosolic free calcium remain unaffected by 100 microM TMB-8. The above results strongly suggest that potentiation occurs at or beyond the site of interaction between the diacylglycerol- and the Ca2+-activated pathways. At concentrations beyond 100 microM the potentiating effect of TMB-8 declines and, finally, at a concentration of 500 microM the drug completely abolishes the secretory response to CCK-8 and TPA. Basal enzyme secretion, however, remains unaffected. At 500 microM severe side effects are observed as is shown by Trypan blue uptake, lactic dehydrogenase release and release of trapped quin2. It is concluded that at lower concentrations TMB-8 does not act as a specific intracellular calcium antagonist in pancreatic enzyme secretion and that inhibitory effects obtained with rather high concentrations of this drug should be treated with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号