首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The type II receptors for the polypeptide growth factors transforming growth factor beta (TGF-beta) and activin belong to a new family of predicted serine/threonine protein kinases. In Xenopus embryos, the biological effects of activin and TGF-beta 1 are strikingly different; activin induces a full range of mesodermal cell types in the animal cap assay, while TGF-beta 1 has no effects, presumably because of the lack of functional TGF-beta receptors. In order to assess the biological activities of exogenously added TGF-beta 1, RNA encoding the TGF-beta type II receptor was introduced into Xenopus embryos. In animal caps from these embryos, TGF-beta 1 and activin show similar potencies for induction of mesoderm-specific mRNAs, and both elicit the same types of mesodermal tissues. In addition, the response of animal caps to TGF-beta 1, as well as to activin, is blocked by a dominant inhibitory ras mutant, p21(Asn-17)Ha-ras. These results indicate that the activin and TGF-beta type II receptors can couple to similar signalling pathways and that the biological specificities of these growth factors lie in their different ligand-binding domains and in different competences of the responding cells.  相似文献   

3.
4.
5.
6.
7.
Transforming growth factor beta (TGF-beta) signals through three high affinity cell surface receptors, TGF-beta type I, type II, and type III receptors. The type III receptor, also known as betaglycan, binds to the type II receptor and is thought to act solely by "presenting" the TGF-beta ligand to the type II receptor. The short cytoplasmic domain of the type III receptor is thought to have no role in TGF-beta signaling because deletion of this domain has no effect on association with the type II receptor, or with the presentation role of the type III receptor. Here we demonstrate that the cytoplasmic domains of the type III and type II receptors interact specifically in a manner dependent on the kinase activity of the type II receptor and the ability of the type II receptor to autophosphorylate. This interaction results in the phosphorylation of the cytoplasmic domain of the type III receptor by the type II receptor. The type III receptor with the cytoplasmic domain deleted is able to bind TGF-beta, to bind the type II receptor, and to enhance TGF-beta binding to the type II receptor but is unable to enhance TGF-beta2 signaling, determining that the cytoplasmic domain is essential for some functions of the type III receptor. The type III receptor functions by selectively binding the autophosphorylated type II receptor via its cytoplasmic domain, thus promoting the preferential formation of a complex between the autophosphorylated type II receptor and the type I receptor and then dissociating from this active signaling complex. These studies, for the first time, elucidate important functional roles of the cytoplasmic domain of the type III receptor and demonstrate that these roles are essential for regulating TGF-beta signaling.  相似文献   

8.
9.
10.
Interleukin-1β (IL-1β), a key-cytokine in osteoarthritis, impairs TGFβ signaling through TβRII down-regulation by increasing its degradation. Here, we investigated the molecular mechanism that controls T?RII fate in IL-1? treated cells. Chondrocytes were treated with IL-1? in the presence of different inhibitors. T?RII and Cav-1 expression were assayed by Western blot and RT-PCR. We showed that IL-1?-induced degradation of T?RII is dependent on proteasome and on its internalization in caveolae. In addition, IL-1? enhances Cav-1 expression, a major constituent of lipid raft. In conclusion, we enlighten a new mechanism by which IL-1? antagonizes TGF? pathway and propose a model of T?RII turnover regulation upon IL-1? treatment.  相似文献   

11.
12.
Swiss 3T3 cells respond to picomolar concentrations of type beta transforming growth factor (TGF-beta) with a dose-dependent increase in the formation of colonies in soft agar, a decrease in the growth of cells in monolayer culture, and changes in morphology. This indicates that these cells have functional TGF-beta receptors able to mediate a biological response. Binding analysis revealed a single class of TGF-beta binding sites (80 000 per cell) with a Kd approximately 50 pM. Receptors were affinity-labeled by covalent attachment to 125I-TGF-beta with bis(sulfosuccinimidyl) suberate (BS3). The complexes formed were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of 100 mM dithiothreitol and migrated as Mr approximately 180 000 complexes in 3-10% linear gradient gels. The apparent size of these complexes was larger in gels with a higher percentage of acrylamide. The labeling of the 125I-TGF-beta-receptor complexes was inhibited by the presence of excess unlabeled TGF-beta but was unaffected by other growth factors. These complexes could be formed by cross-linking whole cells, intact membranes, or solubilized membranes, demonstrating that the TGF-beta receptor is located on the plasma membrane and can be solubilized without destruction of its ability to bind TGF-beta. A larger Mr approximately 360 000 complex was present in 3-10% linear gradient gels without reduction or after extensive cross-linking, suggesting that the receptor consists of two subunits of similar size attached by disulfide bonds. Since BS3 is membrane-impermeable, at least a portion of both subunits is located on the outer surface of the plasma membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
15.
We have investigated the actions of transforming growth factor (TGF) type alpha on epidermal growth factor (EGF) receptor mRNA expression in MDA-468 human mammary carcinoma cells in serum-free media. We found that exposure of MDA-468 cells to TGF alpha results in elevated levels of EGF receptor mRNA. This increase in mRNA accumulation showed time and dose dependence. Addition of TGF beta 1 enhanced the accumulation of EGF receptor mRNA induced by TGF alpha in a time- and dose-dependent manner. We also found that triiodothyronine at physiological concentrations exerts synergistic control on the action of TGF alpha alone, or in association with TGF beta 1, on EGF receptor mRNA expression. Similarly, retinoic acid treatment also enhanced in a time- and dose-dependent manner the TGF alpha-dependent response of EGF receptor mRNA and acted synergistically with TGF beta 1. The results described here suggest that optimum regulation of EGF receptor gene expression by TGF alpha is a complex process involving synergistic interactions with heterologous growth factors and hormones.  相似文献   

16.
The type III transforming growth factor beta (TGFbeta) receptor (TbetaRIII) binds both TGFbeta and inhibin with high affinity and modulates the association of these ligands with their signaling receptors. However, the significance of TbetaRIII signaling in vivo is not known. In this study, we have sought to determine the role of TbetaRIII during development. We identified the predominant expression sites of TbetaRIII mRNA as liver and heart during midgestation and have disrupted the murine TbetaRIII gene by homologous recombination. Beginning at embryonic day 13.5, mice with mutations in TbetaRIII developed lethal proliferative defects in heart and apoptosis in liver, indicating that TbetaRIII is required during murine somatic development. To assess the effects of the absence of TbetaRIII on the function of its ligands, primary fibroblasts were generated from TbetaRIII-null and wild-type embryos. Our results indicate that TbetaRIII deficiency differentially affects the activities of TGFbeta ligands. Notably, TbetaRIII-null cells exhibited significantly reduced sensitivity to TGFbeta2 in terms of growth inhibition, reporter gene activation, and Smad2 nuclear localization, effects not observed with other ligands. These data indicate that TbetaRIII is an important modulator of TGFbeta2 function in embryonic fibroblasts and that reduced sensitivity to TGFbeta2 may underlie aspects of the TbetaRIII mutant phenotype.  相似文献   

17.
18.
TGFβ can promote and/or suppress prostate tumor growth through multiple and opposing actions. Alterations of its expression, secretion, regulation or of the sensitivity of target cells can lead to a favorable environment for tumor development. To gain a better insight in TGFβ function during cancer progression, we have used different cultured human prostate cells: preneoplastic PNT2 cells, the androgen-dependent LNCaP and the androgen-independent PC3 and DU145 prostate cancer cell lines. We have studied by specific ELISA assays in conditioned media (CM), the secretion of TGFβ1 and TGFβ2 in basal conditions and after hormonal treatment (DHT or E2) and the expression of TGFβ1 mRNA by Northern blot. We have also compared the effect of fibroblast CM on TGFβ secretion by the different cell types. Compared to PNT2 cells, cancer cell lines secrete lower levels of active TGFβ which are not increased in the presence of fibroblast CM. LNCaP cells respond to androgen or estrogen treatment by a 10-fold increase of active TGFβ secretion while PC3 and DU145 are unresponsive. In conclusion, prostate cancer cell lines have lost part of their ability to secrete and activate TGFβ, and to regulate this secretion through stromal–epithelial interactions. Androgen-sensitive cancer cells may compensate this loss by hormonal regulation.  相似文献   

19.
20.
Ectopic expression of the alpha5 integrin subunit in cancer cells with little or no endogenous expression of this integrin often results in reduced proliferation as well as reduced malignancy. We now show that inhibition resulting from ectopic expression of alpha5 integrin is due to induction of autocrine negative transforming growth factor-beta (TGF-beta) activity. MCF-7 breast cancer cells do not express either alpha5 integrin or type II TGF-beta receptor and hence are unable to generate TGF-beta signal transduction. Ectopic expression of alpha5integrin expression enhanced cell adhesion to fibronectin, reduced proliferation, and increased the expression of type II TGF-beta receptor mRNA and cell surface protein. Receptor expression was increased to a higher level in alpha5 transfectants by growth on fibronectin-coated plates. Induction of type II TGF-beta receptor expression also resulted in the generation of autocrine negative TGF-beta activity because colony formation was increased after TGF-beta neutralizing antibody treatment. Transient transfection with a TGF-beta promoter response element in tandem with a luciferase cDNA into cells stably transfected with alpha5 integrin resulted in basal promoter activities 5-10-fold higher than those of control cells. Moreover, when alpha5 transfectants were treated with a neutralizing antibody to either TGF-beta or integrin alpha5, this increased basal promoter activity was blocked. Autocrine TGF-beta activity also induced 3-fold higher endogenous fibronectin expression in alpha5 transfectants relative to that of control cells. Re-expression of type II receptor by alpha5 transfection also restored the ability of the cells to respond to exogenous TGF-beta and led to reduced tumor growth in athymic nude mice. Taken together, these results show for the first time that TGF-beta type II receptor expression can be controlled by alpha5beta1 ligation and integrin signal transduction. Moreover, TGF-beta and integrin signal transduction appear to cooperate in their tumor-suppressive functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号