首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 91 毫秒
1.
高等植物光敏色素的分子结构、生理功能和进化特征   总被引:1,自引:0,他引:1  
王静  王艇 《植物学通报》2007,24(5):649-658
光敏色素是植物感受外界环境变化的最重要光受体之一,对红光和远红外光非常敏感。本文综述了光敏色素的分子结构、它所包含的结构域和相应功能以及植物各主要类群中光敏色素基因家族的成员组成与进化关系;重点在分子水平上介绍了光敏色素的生理功能与作用机制。最后,基于最新的研究进展提出了将来的研究方向。  相似文献   

2.
蓝细菌光敏色素(CBCRs)是蓝细菌中感受光的重要光受体,能够响应从紫外光到红外光范围内的光信号,进而影响蓝细菌的光化学行为。蓝细菌光敏色素通过N-末端GAF(cGMP phosphodiesterase,adenylyl cyclase and FhlA domain)结构域中保守性半胱氨酸共价结合藻胆色素,形成具有感光生理功能的色素蛋白质。本文重点在分子水平上综述了蓝细菌光敏色素的分子结构、生物合成和可逆光致变色效应机理,并基于最新的研究进展,就蓝细菌光敏色素今后的研究方向进行了展望。  相似文献   

3.
植物的光敏色素   总被引:6,自引:0,他引:6  
光敏色素作为植物体内的一种光受体,在植物的光形态建成过程中意义重大,本文对光敏色素的分子特性,生理功能,作用方式及基因表达调控等方面的研究作系统的总结。  相似文献   

4.
植物光敏色素入核机理的研究进展   总被引:1,自引:0,他引:1  
光敏色素是植物感受外界环境变化的重要光受体,它对植物的生长发育具有重要的调控作用。在介绍植物光敏色素分子结构的基础上,对不同光敏色素的入核机理以及核内定位进行了综述,并根据最新研究进展对光敏色素入核机理进行了展望。  相似文献   

5.
植物的光敏色素与光信号转导   总被引:1,自引:3,他引:1  
介绍了近年来植物光敏色素与光信号转导的研究进展。  相似文献   

6.
作为植物体内的一种光受体,光敏色素在植物的光形态建成过程中意义重大。植物光敏色素及由它介导的信号传导途径是目前细胞生物学、发育生物学和分子生物学研究的热点之一。本文介绍了光敏色素的分子特性、生理功能和信号转导途径等方面的研究进展。  相似文献   

7.
光敏色素与光调控   总被引:13,自引:1,他引:13  
生物体的新陈代谢和生长发育主要受遗传信息及环境信息的调控,遗传信息规定了个体发育的潜在模式,但它的实现在很大程度上受控于环境信息。光作为主要的环境因子,不仅提供光合作用所需的能量,而且触发植物形态变化、质体分化、新陈代谢等重要反应(统称为光形态建成)。光形态建成至少与四个不同类型光受体相关:光敏色素、蓝光受体、UV-A受体、UV-B受体,其中研究最深入的当属光敏色素。自1983年Vierstra和Quail分离到完整的光敏色素蛋白质以来,科学家相继对光敏色素的分子种类、生物合成与调控及生理机制展开了广泛深入的研究,并且取得了令人瞩目的进展。时至今日,随着新方法、新技术的应用,从光敏色素感受光刺激到基因在细胞核中表达,再到光形态建成的整个信号传递途径已逐步为人们所认识,许多与光敏色素调节有关的顺式因子及相应的DNA结合蛋白也已被确定。功能研究发现,没有哪一个反式作用因子在光调节的表达中单独起作用,可见光敏色素调控的基因表达是相当复杂的。本文拟就光敏色素分子、光敏色素基因家族、光敏色素所激活的信号传递途径及光敏色素与基因表达的关系等方面做一综述。  相似文献   

8.
光是调节植物生长发育最重要的环境信号因子之一。植物通过光受体感受自然环境中光的强度、方向以及光周期等信号的变化,从而调控其生长发育过程。光敏色素A (phytochrome A, PHYA)是植物中唯一的远红光受体蛋白,具有在黑暗下在细胞质中合成,而在照光后快速入核和降解的特性,并通过多种途径精确调节了植物光响应基因的转录网络。同时,蛋白质翻译后修饰在调节PHYA稳定性和活性的过程中发挥了重要的作用。该文论述了PHYA调节光响应基因表达以及PHYA翻译后修饰方向的研究进展,并展望了PHYA在农作物分子设计育种中的应用前景。  相似文献   

9.
王伟  崔红   《广西植物》1999,19(4):381-385
简要综述两种光敏色素(PhyA、PhyB) 的分子特性、感光性及作用模式等方面的研究进展。光敏色素是一种调节植物中许多光反应的色素蛋白复合体。不同光敏色素分子具有特异的感光性。PhyA负责‘甚低辐照反应’和远红光‘高辐照反应’; 而PhyB则调节‘低辐照反应’及红光‘高辐照反应’。另外, 讨论了PhyA和PhyB在光周期感受中的作用。  相似文献   

10.
光控发育和光敏色素的研究进展   总被引:1,自引:0,他引:1  
植物发育是其遗传基因在环境因子作用下,在一定的时间和空间组合下的顺序和协调的表达。光是环境因子中对发育调控作用最广泛、最明显的一个因子。绝大部分光调节反应是不可逆的形态建成反应。所谓光形态建成(photomor-phogenesis)就是光控发育的意思。它是由多个光受体参与调节的复杂过程,这些光受体是光敏色素(phytochrome)、隐花色素(cryptochrome)、紫外光-β受体。近一个世纪来光控发育研究从整体到细胞、最近到大分子水平不断地发展,近20年来积累了大量的资料,形成了一个分支学科。在植物的光生物学中,它是和光合作  相似文献   

11.
LRR结构存在于细胞定位和功能上各不相同的多种蛋白质中,与蛋白质之间的相互作用和细胞内的信号传递过程密切相关。植物中含LRR的蛋白主要有类受体蛋白激酶、抗病基因编码的蛋白和多聚半乳糖醛酸酶抑制蛋白等,它们分别在细胞的生长发育、抗病反应等过程中发挥着重要作用,其相似的LRR结构为从分子水平上研究这些蛋白的作用机制提供了结构基础。  相似文献   

12.
高等植物厌氧适应的生理及分子机制   总被引:31,自引:1,他引:31  
介绍了近年来植物厌氧适应的研究进展,对从无氧呼吸、平衡代谢、抗氧化、通气组织形成的关键性机制,到相关酶蛋白及基因的分离、克隆,以及血红蛋白、钙离子在厌氧信号转导中的可能作用和厌氧适应研究的趋势进行了讨论。  相似文献   

13.
14.
硫化氢(hydrogen sulfide,H2S)是继一氧化氮(nitric oxide,NO)和一氧化碳(carbon monoxide,CO)之后发现的第3种气体信号分子,它能参与生物体内的多种生理生化过程并发挥特定功能。在动物体内,H2S能够调节血管及神经系统功能。植物也能通过产生内源H2S来提高对环境的适应能力,缓解多种逆境胁迫造成的损伤和毒害,参与特定的生理代谢过程,诸如参与气孔运动和延缓衰老等。本文从H2S产生和代谢途径、已发现的生理功能和信号转导机制等方面综述H2S在植物中的最新研究进展,同时也探讨了H2S与其它信号分子的相互作用以及H2S对蛋白质的修饰机制。  相似文献   

15.
高等植物中蛋白磷酸酶2C的结构与功能   总被引:4,自引:0,他引:4  
蛋白质磷酸化/去磷酸化是生物信号级联传递的重要方式之一,主要通过生化性质互为对立的蛋白激酶和蛋白磷酸酶实现。蛋白磷酸酶2C(PP2C)是蛋白磷酸酶的一个分支,其生化性质、蛋白质组成与结构都和其他磷酸酶显著不同,但都在生物信号传递中扮演重要角色。高等植物中PP2C广泛参与脱落酸(ABA)的各种信号途径,包括ABA诱导的种子萌发/休眠、保卫细胞及离子通道调控和气孔关闭、逆境胁迫等。PP2C也多样地参与植物创伤反应、生长发育以及抗病性等各个途径。作为大多数信号途径的负调控因子,PP2C能直接与激酶结合,与其他调控蛋白结合,以及直接与DNA结合调控相关基因的表达。  相似文献   

16.
植物抗病基因结构、功能及其进化机制研究进展   总被引:9,自引:0,他引:9  
植物与病原菌在长期的共进化和相互选择的过程中,逐渐形成了组织障碍、非寄主抗性和小种专化抗性等有效的防御机制。小种专化抗性(基因对基因抗性)主要是由植物抗病基因识别相应的病原菌无毒基因并激活植物体内抗病信号进而抵御病原菌的侵染。从目前已克隆的 70 多个抗病基因来看,它们在结构上具有高度保守性,主要包括核苷酸结合位点(NBS),亮氨酸重复结构(LRR), 蛋白激酶结构域(PK), 果蝇蛋白 Toll 和哺乳动物蛋白质白细胞介素 1 受体[interleukin(IL)-1 receptor]类似结构域(TIR), 双螺旋结构(CC)或亮氨酸拉链(LZ)和跨膜结构域(TM)等,其在抗病基因与病原菌无毒(效应)蛋白互作以及植物内部免疫信号传导中起着重要的作用。同时,抗病基因又通过基因复制、遗传重组等进化机制形成多基因家族,为植物抗病的专化性和多样性提供了重要的遗传基础。本文主要讨论了近来已克隆抗病基因的结构特征、功能以及抗病基因进化机制研究的进展。  相似文献   

17.
Telomeres in eukaryotes comprise specific repetitive DNA sequences and binding proteins. Since their absence results in chromosomal end fusions and gene deletions, they are considered critical for genomic stability. In plants, as in yeasts and mammals, telomeres are essential for normal development and differentiation. Despite recent discoveries concerning plant telomeres, many questions remain about the mechanism of telomere homeostasis in plants. In this review, we summarize the roles of telomeres and telomerasebinding proteins in plant biology and explain how the length of a plant telomere is regulated.  相似文献   

18.
The Physiological Function of Melatonin in Plants   总被引:1,自引:0,他引:1  
Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, was discovered in plants in 1995 but very little research into it has been carried out since. It is present in different parts of all the plant species studied, including leaves, stems, roots, fruits and seeds. This brief review will attempt to provide an overview of melatonin (its discovery, presence and functions in different organisms, biosynthetic route, etc.) and to compile a practically complete bibliography on this compound in plants. The common biosynthetic pathways shared by the auxin, indole-3-acetic, and melatonin suggest a possible coordinated regulation in plants. More specifically, our knowledge to date of the role of melatonin in the vegetative and reproductive physiology of plants is presented in detail. The most interesting aspects for future physiological studies are presented.Key Words: antioxidant, auxin, flowering, growth, IAA, melatonin, plant hormone, reproductive development, rooting, vegetative developmentMelatonin (N-acetyl-5-methoxytryptamine), an “old friend” and well known as an animal hormone but “new” to plant biology is arousing great interest due to its broad distribution in the biological kingdom and the recent data on its possible physiological role in plants. Many studies on melatonin, as a phytochemical compound with potentially interesting health-related properties, have recently appeared, but no more than 15–20 papers with a plant physiological focus have been published since 1995. Besides mentioning the most interesting data on melatonin related with plants, this review will hopefully trigger more studies into this molecule to deepen our understanding of the different physiological roles that it might play in plants. We shall briefly look at the well-known function of melatonin in vertebrates, its discovery in plants and other organisms, and its presence in plants as a possible medicinal phytochemical. The joint biosynthetic pathways of melatonin and the auxin indole-3-acetic acid (IAA) will be described. Thus, we reveal the new and emerging field of melatonin studies in plants, the limited physiological data available and its possible role in plants.  相似文献   

19.
硅在植物中的生理功能   总被引:21,自引:1,他引:21  
硅参与植物的许多生理活动和代谢作用,促进植物器官的形成、发育和健壮生长,改善叶的着生方式和冠层结构,缓解金属离子毒害和盐胁迫,增强植物的抗旱性、抗病性和抗虫性,提高经济产量和质量.该文就这些方面的研究进展作了介绍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号