首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Multiple regions of Harvey sarcoma virus RNA can dimerize in vitro.   总被引:4,自引:1,他引:3       下载免费PDF全文
Y X Feng  W Fu  A J Winter  J G Levin    A Rein 《Journal of virology》1995,69(4):2486-2490
  相似文献   

2.
3.
Conversion of stable RNA hairpin to a metastable dimer in frozen solution   总被引:1,自引:1,他引:0  
Sun X  Li JM  Wartell RM 《RNA (New York, N.Y.)》2007,13(12):2277-2286
Previous studies employing a 79-nucleotide (nt) RNA indicated that this RNA could form two bands in a native polyacrylamide gel while one band was observed in a denaturing gel. This report describes an investigation on the nature of the two corresponding structures and the segment responsible for forming the slower mobility band. Sedimentation equilibrium of the 79-nt RNA was consistent with the two gel bands corresponding to monomer and dimer forms. The portion of the RNA required for dimer formation was explored using a secondary structure prediction algorithm of two 79-nt RNAs linked in a head-to-tail fashion. The predicted structure suggested that the first 21-nt at the 5′ end of each RNA formed a self-complementary duplex. A ribonuclease H assay carried out with RNA prepared as monomer (M), or a mixture of monomer and dimer (M/D), gave results consistent with the predicted M and D structures. Gel mobility experiments on 5′ and 3′ segments of the 79-nt RNA also indicated that dimer formation was due to the 21-nt 5′ end. Studies on the 21-nt RNA molecule and sequence variants showed that this sequence can form a hairpin and a dimer complex. Unexpectedly, the hairpin to dimer conversion was shown to occur at high efficiency in frozen solution, although little or no conversion was observed above 0°C. The results indicate that a freezing environment can promote formation of intermolecular RNA complexes from stable RNA hairpins, supporting the notion that this environment could have played a role in the evolution of RNA complexity.  相似文献   

4.
Two murine sarcoma viruses, the Kirsten and the Harvey, were isolated by passage of mouse type C leukemia viruses through rats. These sarcoma viruses have genomes containing portions of their parental type C mouse leukemia virus genomes, in stable association with specific rat cellular sequences that we find to be quite likely not those of a rat type C leukemia virus. To determine if these murine sarcoma viruses provide a model relevant to the events occurring in spontaneous tumors, we have hybridized DNA and RNA prepared from rat tumors and normal rat tissues to [3H]DNA prepared from the Kirsten murine sarcoma virus. We have also hybridized these rat tissue nucleic acids to [3H]DNA prepared from a respresentative endogenous rat type C leukemia virus, the WFU (Wistar-Furth). Sarcoma-viral rat cellular sequences and endogenous rat leukemia viral sequences were detected in the DNA of both tumor and normal tissues, with no evidence of either gene amplification or additional sequences being present in tumor DNA. Sarcoma-viral rat cellular sequences and endogenous rat leukemia viral sequences were detected at elevated concentrations in the RNA of many rat tumors and in specific groups of normal tissues.  相似文献   

5.
Murine leukemia virus (MLV) produces the unspliced RNA and the singly spliced RNA at a proper ratio at a time. To identify cis-elements involved in the production of the unspliced RNA, we examined the level of unspliced RNA in a series of mutants derived from a prototype Moloney MLV mutant gag-encoding G3.6. Our present data indicated that nt 1560-1906 region in the CA-encoding region in gag was the negative cis-element and nt 5119-5355 region, which was immediately upstream of the splice acceptor site, was the positive cis-element for expression of the unspliced RNA. It was found that the former element made expression of the unspliced RNA dependent upon the latter. These two elements were functional as discrete elements and their activities were relatively position-independent.  相似文献   

6.
Dengue virus RNA-dependent RNA polymerase specifically binds to the viral genome by interacting with a promoter element known as stem-loop A (SLA). Although a great deal has been learned in recent years about the function of this promoter in dengue virus-infected cells, the molecular details that explain how the SLA interacts with the polymerase to promote viral RNA synthesis remain poorly understood. Using RNA binding and polymerase activity assays, we defined two elements of the SLA that are involved in polymerase interaction and RNA synthesis. Mutations at the top of the SLA resulted in RNAs that retained the ability to bind the polymerase but impaired promoter-dependent RNA synthesis. These results indicate that protein binding to the SLA is not sufficient to induce polymerase activity and that specific nucleotides of the SLA are necessary to render an active polymerase-promoter complex for RNA synthesis. We also report that protein binding to the viral RNA induces conformational changes downstream of the promoter element. Furthermore, we found that structured RNA elements at the 3' end of the template repress dengue virus polymerase activity in the context of a fully active SLA promoter. Using assays to evaluate initiation of RNA synthesis at the viral 3'-UTR, we found that the RNA-RNA interaction mediated by 5'-3'-hybridization was able to release the silencing effect of the 3'-stem-loop structure. We propose that the long range RNA-RNA interactions in the viral genome play multiple roles during RNA synthesis. Together, we provide new molecular details about the promoter-dependent dengue virus RNA polymerase activity.  相似文献   

7.
Palindromic repeated sequences (PRSs) are distributed in at least ten regions of the mitochondrial (mt) genome of rice and are, apparently, mobile. In the present study, we examined the possibility of homologous recombination via some PRSs during the course of evolution of Oryza. We first performed Southern hybridization of the DNA from 11 species (18 strains) of Oryza in order to identify the distribution of PRSs in the mitochondrial genome of Oryza. The hybridization patterns revealed genome type-specific and/or species-specific variations. We speculated that homologous recombination via some PRSs might have made a contribution to such variations. After subsequent polymerase chain reaction, Southern hybridization and sequencing, we concluded that homologous recombination mediated by two PRSs occurred in the mtDNA of Oryza after divergence of the BB genome type and the other genome types of Oryza. Evidence was obtained that some PRSs were involved in both insertion and recombination events during the evolution of Oryza. Our results indicate, therefore, that PRSs have contributed considerably to the polymorphism of Oryza mtDNAs.  相似文献   

8.
目的:尝试应用RNA干扰(RNAi)沉默猪源PK-15细胞中的猪内源性反转录病毒(PERV),并通过反转录酶活性及pol基因相对荧光定量PCR检测沉默效果。方法:依据GenBank公布的PERV pol基因序列,采用Invitro-gen公司的BLOCK-iT RNAi Designer软件设计Stealth小干扰RNA(siRNA)序列;将合成的siRNA转染PK-15细胞,72 h后检测细胞上清PERV反转录酶活性及细胞内pol基因拷贝数并评价沉默效果。结果:反转录酶活性及pol基因拷贝数检测结果表明,设计的3条Stealth siRNA序列中,位于pol基因3272~3296 bp的序列能有效沉默PERV。结论:RNAi方法可有效使猪源PK-15细胞中的PERV沉默,为进一步研究天然抗病毒分子与PERV的相互作用提供了实验基础,同时也为猪源异种移植研究中去除PERV提供了一种可供尝试的方法。  相似文献   

9.
Although previous pharmacological and biochemical data support the notion that muscarinic acetylcholine receptors (mAChR) form homo- and heterodimers, the existence of mAChR oligomers in live cells is still a matter of controversy. Here we used bioluminescence resonance energy transfer to demonstrate that M(1), M(2), and M(3) mAChR can form constitutive homo- and heterodimers in living HEK 293 cells. Quantitative bioluminescence resonance energy transfer analysis has revealed that the cell receptor population in cells expressing a single subtype of M(1), M(2), or M(3) mAChR is predominantly composed of high affinity homodimers. Saturation curve analysis of cells expressing two receptor subtypes demonstrates the existence of high affinity M(1)/M(2), M(2)/M(3), and M(1)/M(3) mAChR heterodimers, although the relative affinity values were slightly lower than those for mAChR homodimers. Short term agonist treatment did not modify the oligomeric status of homo- and heterodimers. When expressed in JEG-3 cells, the M(2) receptor exhibits much higher susceptibility than the M(3) receptor to agonist-induced down-regulation. Coexpression of M(3) mAChR with increasing amounts of the M(2) subtype in JEG-3 cells resulted in an increased agonist-induced down-regulation of M(3), suggesting a novel role of heterodimerization in the mechanism of mAChR long term regulation.  相似文献   

10.
As a step toward understanding of the tissue specificity of cellular transformation by RNA tumor viruses were looked for the presence of a putative brain specific regulatory (identifier) sequence (C82B) in the genome of various oncornaviruses. The genomes of Harvey murine sarcoma virus and Rous sarcoma virus contain sequences flanking the viral oncogenes with greater than 80% and greater than 60% homology to C82B, respectively. We suggest that identifier sequences acquired by oncoviruses may determine the potential target cells of malignant transformation after virus penetration.  相似文献   

11.
12.
Beniaminov  A. D.  Ulyanov  N. B.  Samokhin  A. B.  Ivanov  V. I.  Du  Z.  Minyat  E. E. 《Molecular Biology》2003,37(3):446-455
The slipped loop structure, earlier identified as an unusual DNA structure, was found to be a possible element of the RNA folding. In order to experimentally test this suggestion, model oligoribonucleotides capable of forming the SLS were synthesized. Treatment of the oligoribonucleotides with nuclease S1 and RNases specific for single- and double-stranded RNA demonstrated the steric possibility of SLS formation. To determine the possible functional role of SLS-RNA, various naturally occurring RNAs were screened in silico. Among the most interesting findings were dimerization initiation sites of avian retroviral genomic RNAs. Analysis of RNA from 31 viruses showed that formation of the intermolecular SLS during RNA dimerization is theoretically possible, competing with the formation of an alternative hairpin structure. Identification of the secondary structure of selected RNA dimers employing nuclease digestion techniques as well as covariance analysis of the retroviral RNA dimerization initiation site sequences were used to show that the alternative conformation (loop–loop interaction of two hairpins, or kissing hairpins) is the most preferred. Alternative structures and conformational transitions in RNA dimerization mechanisms in avian retroviruses are discussed.  相似文献   

13.
14.
An infective retrovirus requires a mature capsid shell around the viral replication complex. This shell is formed by about 1500 capsid protein monomers, organized into hexamer and pentamer rings that are linked to each other by the dimerization of the C‐terminal domain (CTD). The major homology region (MHR), the most highly conserved protein sequence across retroviral genomes, is part of the CTD. Several mutations in the MHR appear to block infectivity by preventing capsid formation. Suppressor mutations have been identified that are distant in sequence and structure from the MHR and restore capsid formation. The effects of two lethal and two suppressor mutations on the stability and function of the CTD were examined. No correlation with infectivity was found for the stability of the lethal mutations (D155Y‐CTD, F167Y‐CTD) and suppressor mutations (R185W‐CTD, I190V‐CTD). The stabilities of three double mutant proteins (D155Y/R185W‐CTD, F167Y/R185W‐CTD, and F167Y/I190V‐CTD) were additive. However, the dimerization affinity of the mutant proteins correlated strongly with biological function. The CTD proteins with lethal mutations did not dimerize, while those with suppressor mutations had greater dimerization affinity than WT‐CTD. The suppressor mutations were able to partially correct the dimerization defect caused by the lethal MHR mutations in double mutant proteins. Despite their dramatic effects on dimerization, none of these residues participate directly in the proposed dimerization interface in a mature capsid. These findings suggest that the conserved sequence of the MHR has critical roles in the conformation(s) of the CTD that are required for dimerization and correct capsid maturation. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
The rat-derived Harvey murine sarcoma virus (Ha-MuSV) contains a transduced ras oncogene activated by two missense mutations and flanked by rat retroviruslike VL30 sequences. Ha-MuSV induces focal transformation of mouse NIH 3T3 cells in vitro and tumors (fibrosarcomas and splenic erythroleukemias) in newborn mice. We have used these two assays to study the contribution of coding and noncoding viral sequences to the biological activity of Ha-MuSV. A good correlation was found between the in vitro and in vivo assays. In several different isogenic Ha-MuSV variants, those with a rasH gene that had one or both of the Ha-MuSV missense mutations were much more active biologically than the corresponding proto-oncogene. A Ha-MuSV variant that encoded the proto-oncogene protein induced lymphoid leukemias (with thymomas), with a relatively long latent period, rather than the fibrosarcomas and erythroleukemias characteristic of Ha-MuSV with one or both missense mutations. A VL30-derived segment with enhancer activity was identified downstream from v-rasH. A mutant Ha-MuSV from which this 3' noncoding segment was deleted expressed lower levels of the wild-type viral protein, displayed impaired transforming activity in vitro, and induced lymphoid leukemias (with thymomas). 5' noncoding rat c-rasH sequences were found to increase the biological activity of the virus when substituted for the corresponding segment of v-rasH. We conclude that (i) the biological activity of Ha-MuSV can be influence significantly by noncoding sequences located outside the long terminal repeat as well as by coding sequences, (ii) VL30 sequences positively regulate the expression of v-rasH, (iii) relatively low biological levels of ras, whether resulting from low-level expression of wild type v-rasH or high-levels of ras proto-oncogene protein, induce a type of tumor that differs from tumors induced by high biological levels of ras, and (iv) the in vivo pathogenicity of the Ha-MuSV variants correlated with their transforming activity on NIH 3T3 cells.  相似文献   

16.
The West Nile virus (WNV) RNA genome harbors the characteristic methylated cap structure present at the 5' end of eukaryotic mRNAs. In the present study, we report a detailed study of the binding energetics and thermodynamic parameters involved in the interaction between RNA and the WNV RNA triphosphatase, an enzyme involved in the synthesis of the RNA cap structure. Fluorescence spectroscopy assays revealed that the initial interaction between RNA and the enzyme is characterized by a high enthalpy of association and that the minimal RNA binding site of NS3 is 13 nucleotides. In order to provide insight into the relationship between the enzyme structure and RNA binding, we also correlated the effect of RNA binding on protein structure using both circular dichroism and denaturation studies as structural indicators. Our data indicate that the protein undergoes structural modifications upon RNA binding, although the interaction does not significantly modify the stability of the protein.  相似文献   

17.
18.
19.
The motif1-hairpin (M1H), located on (-)-strands of Turnip Crinkle Virus (TCV)-associated satellite RNA C (satC), is a replication enhancer and recombination hotspot. Results of in vivo genetic selection (SELEX: systematic evolution of ligands by exponential enrichment), where 28 bases of the M1H were randomized and then subjected to selection in plants, revealed that most winners contained one to three short motifs, many of which in their (-)-sense orientation are found in TCV and satC (-)-strand promoter elements. Ability to replicate in protoplasts correlated with fitness to accumulate in plants with one significant exception. Winner UC, containing only a seven-base replacement sequence, was the second most fit winner, yet replicated no better than a 28-base random replacement sequence. Fitness of satC containing different M1H replacement sequences could be due to enhanced satC replication or enhanced ability to affect TCV movement, since satC interferes with TCV virion accumulation, which is correlated with enhanced movement to younger tissue. Cells inoculated with TCV and UC accumulated fewer virions when compared to other winners that replicated better in protoplasts but were less fit in plants. UC, and other first and second round winners, contained structures that were on average 33% more stable in their (+)-strand orientation, and most formed hairpins with a A-rich sequence at the base. These results suggest that M1H replacement sequences contribute to the fitness of satC by either containing (-)-strand elements that enhance satRNA replication and/or a (+)-strand hairpin flanked with single-stranded sequence that enhances TCV movement.  相似文献   

20.
The 5′-untranslated regions of all gammaretroviruses contain a conserved “double-hairpin motif” (ΨCD) that is required for genome packaging. Both hairpins (SL-C and SL-D) contain GACG tetraloops that, in isolated RNAs, are capable of forming “kissing” interactions stabilized by two intermolecular G-C base pairs. We have determined the three-dimensional structure of the double hairpin from the Moloney murine leukemia virus ([ΨCD]2, 132 nt, 42.8 kDa) using a 2H-edited NMR-spectroscopy-based approach. This approach enabled the detection of 1H-1H dipolar interactions that were not observed in previous studies of isolated SL-C and SL-D hairpin RNAs using traditional 1H-1H correlated and 1H-13C-edited NMR methods. The hairpins participate in intermolecular cross-kissing interactions (SL-C to SL-D′ and SLC′ to SL-D) and stack in an end-to-end manner (SL-C to SL-D and SL-C′ to SL-D′) that gives rise to an elongated overall shape (ca 95 Å × 45 Å ×  25 Å). The global structure was confirmed by cryo-electron tomography (cryo-ET), making [ΨCD]2 simultaneously the smallest RNA to be structurally characterized to date by cryo-ET and among the largest to be determined by NMR. Our findings suggest that, in addition to promoting dimerization, [ΨCD]2 functions as a scaffold that helps initiate virus assembly by exposing a cluster of conserved UCUG elements for binding to the cognate nucleocapsid domains of assembling viral Gag proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号