首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monophosphoryl lipid A (MLA) obtained from the lipopolysaccharide of Rhodopseudomonas sphaeroides ATCC 17023 was initially purified by silicic acid column chromatography to yield a single major pentaacyl MLA fraction. This fraction was methylated and further purified by reverse-phase high performance liquid chromatography to yield three prominent peak fractions. Laser desorption mass spectrometry of these three fractions allowed us to complete the important structural analysis of lipid A from this source. Three structurally distinct forms of dimethyl MLA were identified where Mr = 1447, 1449, and 1451 atomic mass units. These forms differed only by the presence or absence of unsaturation and keto group in the fatty acids. We established that the acyloxyacyl group (either delta 7-tetradecenoyloxytetradecanoate or tetradecanoyloxytetradecanoate) and the 3-ketotetradecanoate or hydroxytetradecanoate occupied the 2'- and 2-positions of the glucosamine disaccharide, respectively. Analysis of several minor fractions suggests that there is considerable structural heterogeneity in the MLA. With this new knowledge, the study of the structure-to-function relationship of the reported lack of toxicity of lipopolysaccharide from R. sphaeroides can be completed.  相似文献   

2.
The structure of the lipid A component of lipopolysaccharides isolated from two wild-type strains (Fisher 2 and 7) and one rough mutant (PAC 605) of Pseudomonas aeruginosa was investigated using chemical analysis, methylation analysis, combined gas-liquid chromatography/mass spectrometry, laser-desorption mass spectrometry and NMR spectroscopy. The lipid A backbone was found to consist of a pyranosidic beta 1,6-linked D-glucosamine disaccharide [beta-D-GlcpN-(1----6)-D-GlcpN], phosphorylated in positions 4' and 1. Position 6' of the beta-D-GlcpN-(1----6)-D-GlcpN disaccharide was identified as the attachment site of the core oligosaccharide and the hydroxyl group at C-4 was not substituted. Lipid A of the three P. aeruginosa strains expressed heterogeneity with regard to the degree of acylation: a hexaacyl as well as a pentaacyl component were structurally characterized. The hexaacyl lipid A contains two amide-bound 3-O-acylated (R)-3-hydroxydodecanoic acid groups [12:0(3-OH)] at positions 2 and 2' of the GlcN dissacharide and two ester-bound (R)-3-hydroxydecanoic acid groups [10:0(3-OH)] at positions 3 and 3'. The pentaacyl species, which represents the major lipid A component, lacks one 10:0(3-OH) residue, the hydroxyl group in position 3 of the reducing GlcN residue being free. In both hexa- and pentaacyl lipid A the 3-hydroxyl group of the two amide-linked 12:0(3-OH) residues are acylated by either dodecanoic (12:0) or (S)-2-hydroxydodecanoic acid [12:0(2-OH)], the lipid A species with two 12:0(2-OH) residues, however, being absent. The presence of only five acyl residues in the major lipid A fraction may account for the low endotoxic activity observed with P. aeruginosa lipopolysaccharide.  相似文献   

3.
Lipopolysaccharide (LPS) extracted from the deep rough mutant of Escherichia coli D31m4 was disaggregated with 0.1 M EDTA, pH 7.0, and fractionated on a diethylaminoethyl-cellulose column to yield the biphosphate form of LPS. After methylation, the derivative was purified by reverse-phase high performance liquid chromatography using a C18-bonded silica cartridge. A linear gradient of 50-100% isopropyl alcohol/water (93:7, v/v) in acetonitrile/water (93:7, v/v) was used over a period of 60 min. The derivatized LPS showed a single major peak by high performance liquid chromatography, and this hexamethyl hexaacyl LPS was recovered and subjected to chemical analysis, plasma desorption mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. Chemical analysis of the purified hexamethyl LPS quantitated certain key chemical compositions. Plasma desorption mass spectrometry showed a molecular ion (M + CH2 + Na)+ at m/z 2360, which established the molecular formula and Mr to be C116H214N2O39P2 and 2323, respectively. Thus, it contained two each of glucosamine, 2-keto-3-deoxyoctonate, and phosphate; four beta-hydroxymyristates; one laurate; and one myristate. NMR spectroscopy confirmed the locations of the four ester-linked fatty acyl groups. Based on these results and the known structure of free lipid A, the complete structure of the deep-rough chemotype LPS from E. coli can now be presented with confidence. This is the first report of a successful purification to homogeneity and the characterization of the simplest of the LPS at the intact level. This study shows that the natural distribution of the lipid A moiety of LPS from E. coli D31m4 is hexaacyl/pentaacyl in a molar ratio of greater than 90:less than 10. Acid hydrolysis of LPS causes the formation of the lower homologues of the free lipid A.  相似文献   

4.
Wang Z  Li J  Altman E 《Carbohydrate research》2006,341(17):2816-2825
The lipid A components of Aeromonas salmonicida subsp. salmonicida from strains A449, 80204-1 and an in vivo rough isolate were isolated by mild acid hydrolysis of the lipopolysaccharide. Structural studies carried out by a combination of fatty acid, electrospray ionization-mass spectrometry and nuclear magnetic resonance analyses confirmed that the structure of lipid A was conserved among different isolates of A. salmonicida subsp. salmonicida. All analyzed strains contained three major lipid A molecules differing in acylation patterns corresponding to tetra-, penta- and hexaacylated lipid A species and comprising 4'-monophosphorylated beta-2-amino-2-deoxy-d-glucopyranose-(1-->6)-2-amino-2-deoxy-d-glucopyranose disaccharide, where the reducing end 2-amino-2-deoxy-d-glucose was present primarily in the alpha-pyranose form. Electrospray ionization-tandem mass spectrometry fragment pattern analysis, including investigation of the inner-ring fragmentation, allowed the localization of fatty acyl residues on the disaccharide backbone of lipid A. The tetraacylated lipid A structure containing 3-(dodecanoyloxy)tetradecanoic acid at N-2',3-hydroxytetradecanoic acid at N-2 and 3-hydroxytetradecanoic acid at O-3, respectively, was found. The pentaacyl lipid A molecule had a similar fatty acid distribution pattern and, additionally, carried 3-hydroxytetradecanoic acid at O-3'. In the hexaacylated lipid A structure, 3-hydroxytetradecanoic acid at O-3' was esterified with a secondary 9-hexadecenoic acid. Interestingly, lipid A of the in vivo rough isolate contained predominantly tetra- and pentaacylated lipid A species suggesting that the presence of the hexaacyl lipid A was associated with the smooth-form lipopolysaccharide.  相似文献   

5.
The lipopolysaccharide (LPS) of Chlamydia trachomatis serotype E was isolated from tissue culture-grown elementary bodies and analyzed structurally by mass spectrometry and 1H, 13C and 31P nuclear magnetic resonance. The LPS is composed of the same pentasaccharide bisphosphate alphaKdo-(2-8)-alphaKdo-(2-4)-alphaKdo-(2-6)-betaGlcN-4P-(1-6)-alphaGlcN-1P (Kdo is 3-deoxy-alpha-d-manno-oct-2-ulosonic acid) as reported for C. trachomatis serotype L2[Rund, S., Lindner, B., Brade, H. and Holst, O. (1999) J. Biol. Chem. 274, 16819-16824]. The glucosamine disaccharide backbone is substituted with a complex mixture of fatty acids with ester or amide linkage whereby no ester-linked hydroxy fatty acids were found. The LPS was purified carefully (with contaminations by protein or nucleic acids below 0.3%) and tested for its ability to induce proinflammatory cytokines in several readout systems in comparison to LPS from C. trachomatis serotype L2 and Chlamydophila psittaci strain 6BC as well as enterobacterial smooth and rough LPS and synthetic hexaacyl lipid A. The chlamydial LPS were at least 10 times less active than typical endotoxins; specificity of the activities was confirmed by inhibition with the LPS antagonist, B1233, or with monoclonal antibodies against chlamydial LPS. Like other LPS, the chlamydial LPS used toll-like receptor TLR4 for signalling, but unlike other LPS activation was strictly CD14-dependent.  相似文献   

6.
Inhibition of lipopolysaccharide (LPS) synthesis in Pseudomonas aeruginosa at the stage of incorporation of 3-deoxy-D-manno-octulosonate (KDO) caused accumulation of a lipid A precursor which contained all of the fatty acids present on the lipid A of mature LPS. The enzyme CTP:CMP-3-deoxy-D-manno-octulosonate cytidylyltransferase (CMP-KDO synthetase) from P. aeruginosa is inhibited by the KDO analog alpha-C-[1,5-anhydro-8-amino-2,7,8-trideoxy-D-manno-octopyranosyl] carboxylate (I), and I is effectively delivered to P. aeruginosa following attachment by amide linkage to the carboxyl terminus of alanylalanine. Intracellular hydrolysis releases the free inhibitor (I) which then inhibits activation of KDO by CMP-KDO synthetase causing accumulation of lipid A precursor and subsequent growth stasis. The major lipid A precursor species accumulated was purified and found to contain glucosamine, phosphate, C12:O, 2OH-C12:O and 3OH-C10:0 (in ester linkage), and 3OH-C12:0 (in amide linkage) in molar ratios of 1:1:0.5:0.5:1:1. Analysis of precursor by fast atom bombardment mass spectroscopy yielded a major ion (M - H)- of mass 1616 and fragments which were consistent with the structure of lipid A from P. aeruginosa. In contrast, Salmonella typhimurium, Escherichia coli, Citrobacter sp., Serratia marcescens, Enterobacter aerogenes, and Enterobacter cloacae all accumulated underacylated lipid A precursors which only contained 3-OH-C14:0, glucosamine, and phosphate. This difference and species-specific patterns of major and minor precursor species show that early steps in the assembly of lipid A are similar, but not identical in enteric and nonenteric Gram-negative bacteria.  相似文献   

7.
The Lipid A from the lipopolysaccharide of Pseudomonas aeruginosa was examined by high-field nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). The backbone structure and the position of phosphate substituents were unambiguously established by one- and two-dimensional 1H, 13C, and 31P NMR techniques on a de-O-acylated Lipid A sample. The Lipid A has a beta-(1,6)-glucosamine disaccharide structure which is substituted by phosphomonoesters through glycosidic bonds at C-1 and at C-4'. The configuration of the glycosidically linked phosphate at position C-1 was identified as alpha which is the same as that of Enterobacterial Lipid A. Chemical analysis revealed that the Lipid A contained 2-hydroxydodecanoic, 3-hydroxydodecanoic, dodecanoic, 3-hydroxydecanoic, and hexadecanoic acids in the approximate molar ratios 2.2:2.0:0.2:0.8:0.4. From 1H NMR and fast atom bombardment (FAB) mass spectrometry on the de-O-acylated Lipid A, it was established that both glucosamine residues were N-acylated by 3-hydroxydodecanoic acid. The identity and positions of the ester bound fatty acids in the intact Lipid A were investigated by negative ion FAB-MS. In addition to the hexaacyl and pentaacyl Lipid A species, a tetraacyl species was identified. Heterogeneity due to hydroxylated and nonhydroxylated dodecanoic acid esters could be uniquely localized to the nonreducing beta-glucosamine residue from the fragmentation pattern observed in the negative ion FAB-MS. The complete structure of the Lipid A from P. aeruginosa will be useful in understanding the determinants responsible for the endotoxin activity of this molecule.  相似文献   

8.
We have determined the complete structure of a glycolipid (designated lipid X) previously found to accumulate in certain Escherichia coli mutants defective in phosphatidylglycerol synthesis (Nishijima, M., and Raetz, C.R.H. (1979) J. Biol. Chem. 254, 7837-7844). Based on fast atom bombardment mass spectrometry and proton nuclear magnetic resonance studies, this substance is an acylated metabolite of glucosamine 1-phosphate. Lipid X of E. coli has a Mr = 711.87 as the free acid (C34H66NO12P) and contains two beta-hydroxymyristate moieties, one attached as an amide at the 2 position and the other as an ester at the 3 position of the sugar. It has free hydroxyl groups at the 4 and 6 positions, and the anomeric configuration is alpha. The structure of lipid X from E. coli closely resembles the reducing end subunit of lipid A, and it might represent a very early precursor in the biosynthesis of lipid A. To our knowledge, fatty acyl derivatives of glucosamine 1-phosphate have not been reported previously.  相似文献   

9.
We previously reported that human blood platelets are directly stimulated by endotoxic Lipid A via the protein kinase C pathway (Grabarek, J., Timmons, S., and Hawiger, J. (1988) J. Clin. Invest. 82, 964-971). To study the relationship between the molecular structure of Lipid A and its ability to activate human platelets, we used Lipid A homologs derived from Salmonella minnesota Re595 lipopolysaccharide. Preparations of Lipid A are heterogeneous in regard to the degree of substitution of fatty acids which result in multiple homologs. These were separated by thin-layer chromatography and characterized by fast atom bombardment spectroscopy and related techniques (Johnson R. S., Her, G.-R., Grabarek, J., Hawiger, J., and Reinhold, V. N. (1990) J. Biol. Chem. 265, 8108-8116). The homologs of monophosphoryl Lipid A (MLA) present in fractions TLC-8 (heptaacyl MLA ion, m/z 1953), TLC-7 (three hexaacyl species with predominant MLA ion m/z 1715), and TLC-6 (four pentaacyl homologs with predominant MLA ion, m/z 1505) induced secretion of [14C]serotonin and aggregation of platelets. Lipid A homologs in fractions TLC-5 (three tetraacyl MLA ions, m/z 1323, 1307, and 1279), TLC-4 (one major triacyl MLA ion, m/z 1097), TLC-3 (tetraacyl MLA ion, m/z 1278), TLC-2 (a diphosphoryl hexaacyl Lipid A ion, m/z 1795, and several ions of low abundance), and TLC-1 (two ions, m/z 1097 and 666) were not active in regard to human platelet aggregation and [14C]serotonin secretion. The most active homolog was heptaacyl MLA ion, m/z 1953, present in TLC-8, while homologs present in TLC-7 and TLC-6 were 5 and 10 times less active, respectively. Rapid phosphorylation of a human platelet protein of Mr 40,000-47,000 (P47), a substrate for protein kinase C activation, preceded secretion of serotonin when platelets were triggered by the most active heptaacyl MLA ion, m/z 1953. These events were time-dependent, with half-maximal response of phosphorylation of P47 at 30 s and [14C]serotonin secretion at 45 s. A marked difference in the degree of phosphorylation of P47 was observed with heptaacyl MLA homolog present in TLC-8 inducing complete phosphorylation (97%), whereas less acylated Lipid A homologs present in TLC-1 caused marginal phosphorylation (20%). These results indicate that the degree of acylation of monophosphoryl Lipid A determines its functional properties toward human platelets in regard to secretion of [14C]serotonin, aggregation, and activation of protein kinase C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
A method is described for the determination of the complete structure of lipid A obtained from the lipopolysaccharides of Salmonella strains which can now be applied A samples obtained from other gram-negative bacteria. The lipopolysaccharides were treated under mild acid conditions to yield a crude monophosphoryl lipid A (MLA) mixture which was then fractionated on a silicic column to yield the structural analogs. Each of the purified MLA analogs was methylated with diazomethane and further fractionated by reverse-phase high performance liquid chromatography to yield a higly purified dimethyl MLA. Such a sample was analyzed by chemical means and by modern spectroscopic methods.The molecular size of dimethyl MLA and fatty acid distribution in the reduciong and distal glucosamines were determined bu utilizing positive ion fast atom bombardment mass spectrometry. The location of all of the ester-linked fatty acids and the single phosphate group as well as the anomeric configuration of the two glucosamines were determined by utilizing proton-nuclear magnetic resonance spectroscopy. Chemical degradation studies on MLA and dimethyl MLA using triethylamine also contributed to determining the location of the ester-linked fatty acids.  相似文献   

11.
Abstract The chemical structure of the lipid A moiety of the lipopolysaccharide of the type strain of Plesiomonas shigelloides was elucidated. It consists of a β-(1 → 6)-linked glucosamine disaccharide carrying phosphate groups at C-1 of the reducing and at C-4' of the non-reducing glucosamine. It contains a total of 6 residues of fatty acids, 2 amide-linked and 4 ester-linked. The amino groups of the backbone disaccharide are N -acylated by substituted 3-hydroxyacyl residues: at the reducing glucosamine by 3-O-(14:0)14:0; and at the non-reducing glucosamine by 3-O-(12:0)14:0.
Two residues of 3-hydroxytetradecanoic acid are linked to C-3 and C-3' of the glucosamine residues; the hydroxy groups of these ester-linked 3-hydroxytetradecanoic acids are unsubstituted. In free lipid A, the hydroxyl groups at C-4 and C-6' are unsubstituted, indicating that the 2-keto-3-deoxyoctonic acid (KDO) is linked to C-6' of the non-reducing glucosamine, as was shown with enterobacterial lipid A. The taxonomical significance of these structural details is discussed.  相似文献   

12.
The lipid A component of meningococcal lipopolysaccharide was structurally characterized by using chemical modification methods, methylation analysis, 31P nuclear magnetic resonance, and laser desorption mass spectroscopy. It was shown that Neisseria meningitidis lipid A consists of a 1,4'-bisphosphorylated beta(1'----6)-linked D-glucosamine disaccharide (lipid A backbone), both phosphate groups being largely replaced by O-phosphorylethanolamine. This disaccharide harbors two nonsubstituted hydroxyl groups at positions 4 and 6', the latter representing the attachment site of the oligosaccharide portion in lipopolysaccharide. In addition, it is substituted by up to six fatty acid residues. In the major lipid A component, representing a hexaacyl species, the hydroxyl groups at positions 3 and 3' carry (R)-3-hydroxydodecanoic acid [12:0(3-OH)], whereas the amino groups at positions 2 and 2' are substituted by (R)-3-(dodecanoyloxy)tetradecanoic acid [3-O(12:0)-14:0]. A minor portion was present as a tetraacyl lipid A component lacking either dodecanoic acid (12:0) or 12:0 and 12:0(3-OH). N. meningitidis lipid A, therefore, significantly differs from Escherichia coli lipid A by the nature and locations of fatty acids and the substitution of O-phosphorylethanolamine for the nonglycosyl (4'-P) and glycosyl phosphate.  相似文献   

13.
Burkholderia cepacia, a Gram-negative bacterium ubiquitous in the environment, is a plant pathogen causing soft rot of onions. This microorganism has recently emerged as a life-threatening multiresistant pathogen in cystic fibrosis patients. An important virulence factor of B. cepacia is the lipopolysaccharide (LPS) fraction. Clinical isolates and environmental strains possess LPS of high inflammatory nature, which induces a high level production of cytokines. For the first time, the complete structure of the lipid A components isolated from the lipopolysaccharide fraction of a clinical strain of B. cepacia is described. The structural studies carried out by selective chemical degradations, MS, and NMR spectroscopy revealed multiple species differing in the acylation and in the phosphorylation patterns. The highest mass species was identified as a penta-acylated tetrasaccharide backbone containing two phosphoryl-arabinosamine residues in addition to the archetypal glucosamine disaccharide [Arap4N-l-beta-1-P-4-beta-D-GlcpN-(1-6)-alpha-D-GlcpN-1-P-1-beta-L-Arap4N]. Lipid A fatty acids substitution was also deduced, with two 3-hydroxytetradecanoic acids 14:0 (3-OH) in ester linkage, and two 3-hydroxyhexadecanoic acids 16:0 (3-OH) in amide linkage, one of which was substituted by a secondary 14:0 residue at its C-3. Other lipid A species present in the mixture and exhibiting lower molecular weight lacked one or both beta-L-Arap4N residues.  相似文献   

14.
The chemical structure of lipid A from the lipopolysaccharide of the mushroom-associated bacterium Pseudomonas reactans, a pathogen of cultivated mushroom, was elucidated by compositional analysis and spectroscopic methods (MALDI-TOF and two-dimensional NMR). The sugar backbone was composed of the beta-(1'-->6)-linked d-glucosamine disaccharide 1-phosphate. The lipid A fraction showed remarkable heterogeneity with respect to the fatty acid and phosphate composition. The major species are hexacylated and pentacylated lipid A, bearing the (R)-3-hydroxydodecanoic acid [C12:0 (3OH)] in amide linkage and a (R)-3-hydroxydecanoic [C10:0 (3OH)] in ester linkage while the secondary fatty acids are present as C12:0 and/or C12:0 (2-OH). A nonstoichiometric phosphate substitution at position C-4' of the distal 2-deoxy-2-amino-glucose was detected. Interestingly, the pentacyl lipid A is lacking a primary fatty acid, namely the C10:0 (3-OH) at position C-3'. The potential biological meaning of this peculiar lipid A is also discussed.  相似文献   

15.
The fatty acids present in lipopolysaccharides from Xanthomonas sinensis were identified as decanoic, 9-methyl-decanoic, 2-hydroxy-9-methyl-decanoic, 2-hydroxy-9-methyl-decanoic, D-3-hydroxy-decanoic, D-3-hydroxy-9-methyl-decanoic, D-3-hydroxy-dodecanoic, and D-3-hydroxy-11-methyl-dodecanoic acid. These fatty acids occur in the lipid A component where they are bound through ester and amide linkages to glucosamine residues. All types of fatty acids are ester bound; however, part of D-3-hydroxy-dodecanoic and D-3-hydroxy-11-methyl-dodecanoic acid is also involved in amide linkage. The hydroxyl groups of ester-linked 3-hydroxy fatty acids are not substituted. Similar fatty acid patterns were obtained from lipopolysaccharides of nine other Xanthomonas species.  相似文献   

16.
The detailed chemical structure of lipid A of Shigella sonnei phase II was elucidated. The lipid A backbone consists of a β-1,6-linked glucosamine disaccharide substituted with (mono) phosphates both at C-1 and C-4′. This was shown by selective degradation followed by 31P-NMR studies. C-4 and C-6′ were found to contain unsubstituted hydroxyl groups, the latter being the point of attachment of KDO as reported for other enterobacterial lipids A.The amino groups of the glucosamine disaccharide are substituted by 3-hydroxy fatty acids: 3-O-(14:0) 14:0 at the non-reducing glucosamine and 3-O-(12:0) 14:0 at the reducing glucosamine. In contrast to earlier reports, no ethanolamine or phosphodiester linkages were found in lipid A.  相似文献   

17.
The structure of lipid A from Azospirillum lipoferum, a plant-growth-promoting rhizobacterium, was investigated. It was determined by chemical analysis, mass spectrometric methods, as well as 1D and 2D NMR spectroscopy. Because of the presence of substituents, the investigated lipid A differs from typical enterobacterial lipid A molecules. Its backbone is composed of a beta-(1,6)-linked D-glucosamine disaccharide but lacks phosphate residues. Moreover, the reducing end of the backbone (position C-1) is substituted with alpha-linked d-galacturonic acid. 3-hydroxypalmitoyl residues are exclusively connected to amino groups of the glucosamine disaccharide. Hydroxyls at positions C-3 and C-3' are esterified with 3-hydroxymyristic acids. Primary polar fatty acids are partially substituted by nonpolar fatty acids (namely, 18:0, 18:1 or 16:0), forming acyloxyacyl moieties.  相似文献   

18.
The chemical structure of the lipid A component of lipopolysaccharide excreted into the liquid medium by the plant pathogenic enterobacterium Erwinia carotovora FERM P-7576 was characterized. It consists of a -1, 6-linked glucosamine disaccharide which carries ester-and amide-bound fatty acids and phosphate similar to the lipid A from other gram-negative bacteria. The lipid A preparation was not uniform in the number and composition of the fatty acids linked to the disaccharide. Four prominent lipids A were involved, they were composed of five to seven residues of fatty acid. Among them the major component was hexa-acyl lipid A, in which the hydroxyl group at position 3 and the amino group of the non-reducing glucosamine unit carry 3-dodecanoyl-oxytetradecanoyl residues. Positions 2 and 3 of the reducing glucosamine unit were substituted by 3-hydroxytetradecanoic acid. In the hepta-acyl lipid A, an additional hexadecanoic acid was linked to the hydroxyl group of the 3-hydroxytetradecanoyl residue at position 2 of the hexa-acyl lipid A. Two penta-acyl lipids A were the homologs of the hexa-acyl lipid A with decreasing acylation. Dodecanoic acid was missing from one, and 3-hydroxytetradecanoic acid from another. 3-Dodecanoyloxytetradecanoyl residue at position 3 differentiates E. carotovora lipid A from that of other gram-negative bacteria.Abbreviations LPS lipopolysaccharide - GlcN glucosamine - KDO 3-deoxy-d-manno-octulosonic acid - FAB-MS fast atom bombardment mass spectrometry - u atomic mass unit  相似文献   

19.
Structural studies carried out on the isolated free lipid A of Rhodospirillum tenue 2761 revealed a new type of structure for this lipid. The lipid A backbone of 1',6-linked glucosamine disaccharide (central disaccharide) is substituted by three different sugar residues: the non-reducing end of the disaccharide by 4-amino-4-deoxy-L-arabinose 1-phosphate and its reducing end glycosidically by D-arabinofuranose 1-phosphate; further, the reducing glucosamine of the disaccharide is branched to a third glucosamine residue by a 1',4-glycosidic linkage. The amino and the hydroxyl groups of the central disaccharide are acylated by 3-hydroxydecanoic acid (amide-linked) and palmitic and myristic acids (ester-linked). Neither amino nor hydroxyl groups of the three external sugar residues are acylated. The results suggest the following chemical structure for the lipid A of R. tenue 2761: (formula: see text).  相似文献   

20.
The chemical structure of the lipopolysaccharide of a deep-rough mutant (strain I-69 Rd-/b+) of Haemophilus influenzae was investigated. The hydrophilic backbone of lipid A was shown to consist of a beta-(1',6)-linked D-glucosamine disaccharide with phosphate groups at C-1 of the reducing D-glucosamine and at C-4' of the non-reducing one. Four molecules of (R)-3-hydroxytetradecanoic acid were found directly linked to the lipid A backbone, two by amide and two by ester linkage (positions 2,2' and 3,3', respectively). Laser-desorption mass spectrometry showed that both 3-hydroxytetradecanoic acids linked to the non-reducing glucosamine carry tetradecanoic acid at their 3-hydroxyl group, so that altogether six molecules of fatty acid are present in lipid A. The lipopolysaccharide was the first described to contain only one sugar unit linked to lipid A. This, sugar in accordance with a previous report [Zamze et al. (1987) Biochem. J. 245, 583-587], was shown to be a dOclA phosphate. The phosphate group was found at position 4, but the analytical procedures employed (permethylation and methanolysis followed by gas-liquid chromatography/mass spectrometry) also revealed dOclA 5-phosphate. Since a cyclic 4,5-phosphate could be ruled out by 31P-NMR, we conclude that, in this lipopolysaccharide, a mixture of dOclA 4- and 5-phosphate is present. By methylation analysis of the dephosphorylated, deacylated and reduced lipopolysaccharide the attachment site of the dOclA was assigned to position C-6' of the non-reducing glucosamine of lipid A. The anomeric linkages present in the lipopolysaccharide were assessed by 1H-NMR and 13C-NMR of deacylated lipopolysaccharide. The saccharide backbone of this Haemophilus influenzae lipopolysaccharide possesses the following structure: (Formula; see text)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号