首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic absence epilepsy rat from Strasbourg is considered an isomorphic, predictive, and homologous model of typical childhood absence epilepsy. It is characterized by the expression of spike-and-wave discharges (SWDs) in the thalamus and cortex. The ketogenic diet (KD) is successfully used in humans and animals with various types of seizures, but was not effective in children with intractable atypical absence epilepsy. Here, we studied its potential impact on the occurrence of SWDs in genetic absence epilepsy rat from Strasbourg. Rats were fed the KD for 3 weeks during which they were regularly subjected to the electroencephalographic recording of SWDs. The KD did not influence the number and duration of SWDs despite a 15–22% decrease in plasma glucose levels and a large increase in β-hydroxybutyrate levels. Likewise, the KD did not affect the level of expression of the blood–brain barrier glucose transporter GLUT1 or of the monocarboxylate transporters, MCT1 and MCT2. This report extends the observation in humans that the KD does not appear to show effectiveness in intractable atypical absence epilepsy to this model of typical childhood absence epilepsy which responds to specific antiepileptic drugs.  相似文献   

2.
AimsWe investigated the effects of ketogenic diet (KD) on levels of tumor necrosis factor alpha (TNF-α, a classical pro-inflammatory cytokine), BDNF (brain-derived neurotrophic factor, commonly associated with synaptic plasticity), and S100B, an astrocyte neurotrophic cytokine involved in metabolism regulation.Main methodsYoung Wistar rats were fed during 8 weeks with control diet or two KD, containing different proportions of omega 6 and omega 3 polyunsaturated fatty acids. Contents of TNF-α, BDNF and S100B were measured by ELISA in two brain regions (hippocampus and striatum) as well as blood serum and cerebrospinal fluid.Key findingsOur data suggest that KD was able to reduce the levels of BDNF in the striatum (but not in hippocampus) and S100B in the cerebrospinal fluid of rats. These alterations were not affected by the proportion of polyunsaturated fatty acids offered. No changes in S100B content were observed in serum or analyzed brain regions. Basal TNF-α content was not affected by KD.SignificanceThese findings reinforce the importance of this diet as an inductor of alterations in the brain, and such changes might contribute to the understanding of the effects (and side effects) of KD in brain disorders.  相似文献   

3.
Metabolic factors affecting the reproductive axis in male sheep   总被引:4,自引:0,他引:4  
Changes in food intake affect the reproductive axis in both sexes, and the nutritional signals involved and the sites that receive those signals are now beginning to be unravelled. Our studies have focussed on the mature male sheep, a model in which high food intake stimulates GnRH-LH pulse frequency for only 10-20 days but continues to promote testicular growth over several months. Different signals and different target organs seem to be responsible for these short- and long-term responses. Short-term dietary treatments lead to changes in blood concentrations of glucose, fatty acids, insulin and leptin, and concentrations of glucose, insulin, leptin and some amino acids in cerebrospinal fluid. It seems unlikely that amino acids affect GnRH-LH secretion directly in sheep. Intracerebroventricular infusions of insulin specifically increase LH pulse frequency, but intravenous, intra-abomasal or intracerebroventricular infusions of glucose have no effect, despite their effects on cerebrospinal fluid insulin concentrations. The addition of fatty acids to the diet also increases LH pulse frequency, but does not affect the concentrations of insulin or leptin in the cerebrospinal fluid. It appears that acute responses to changes in nutrition involve a range of alternative pathways, possibly including interactions among insulin, leptin and energy substrates. Effects of long-term dietary treatments on testicular size are only partly dependent on the GnRH-LH system (that is, on brain control) and so must also depend on other, as yet unknown, pathways. Concepts of 'metabolic sensing and integration' are being developed from the basis of existing knowledge of the central control of appetite and reproduction.  相似文献   

4.
Long-chain polyunsaturated (n-3) fatty acids have been reported to influence the efficiency of membrane receptors, transporters and enzymes. Because the brain is particularly rich in docosahexaenoic acid (DHA, 22:6 n-3), the present study addresses the question of whether the 22:6 n-3 fatty acid deficiency induces disorder in regulation of energy metabolism in the CNS. Three brain regions that share a high rate of energy metabolism were studied: fronto-parietal cortex, hippocampus and suprachiasmatic nucleus. The effect of the diet deficient in n-3 fatty acids resulted in a 30-50% decrease in DHA in membrane phospholipids. Moreover, a 30% decrease in glucose uptake and a 20-40% decrease in cytochrome oxidase activity were observed in the three brain regions. The n-3 deficient diet also altered the immunoreactivity of glucose transporters, namely GLUT1 in endothelial cells and GLUT3 in neurones. In n-3 fatty acid deficient rats, GLUT1-immunoreactivity readily detectable in microvessels became sparse, whereas the number of GLUT3 immunoreactive neurones was increased. However, western blot analysis showed no significant difference in GLUT1 and GLUT3 protein levels between rats deficient in n-3 fatty acids and control rats. The present results suggest that changes in energy metabolism induced by n-3 deficiency could result from functional alteration in glucose transporters.  相似文献   

5.
Anti‐ischaemic drug mildronate suppresses fatty acid metabolism and increases glucose utilization in myocardium. It was proposed that it could produce a favourable effect on metabolic parameters and glucose transport in diabetic animals. Rats with streptozotocin diabetes mellitus were treated with mildronate (100 mg/kg daily, per os, 6 weeks). Therapeutic effect of mildronate was monitored by measuring animal weight, concentrations of blood glucose, insulin, blood triglycerides, free fatty acids, blood ketone bodies and cholesterol, glycated haemoglobin per cent (HbA1c%) and glucose tolerance. GLUT1 mRNA and protein expression in kidneys, heart, liver and muscles were studied by means of real time RT‐PCR and immunohistochemistry correspondingly. In the streptozotocin + mildronate group, mildronate treatment caused a significant decrease in mean blood glucose, cholesterol, free fatty acid and HbA1c concentrations and improved glucose tolerance. Induction of streptozotocin diabetes mellitus provoked increase of both GLUT1 gene and protein expression in kidneys, heart and muscle, mildronate treatment produced normalization of the GLUT1 expression levels. In the liver a similar effect was observed for GLUT1 protein expression, while GLUT1 gene expression was increased by mildronate. Mildronate produces therapeutic effect in streptozotocin diabetes model. Mildronate normalizes the GLUT1 expression up‐regulated by streptozotocin diabetes mellitus in kidneys, heart, muscle and liver. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
We have previously shown that glucose utilization and glucose transport were impaired in the brain of rats made deficient in n-3 polyunsaturated fatty acids (PUFA). The present study examines whether n-3 PUFA affect the expression of glucose transporter GLUT1 and glucose transport activity in the endothelial cells of the blood–brain barrier. GLUT1 expression in the cerebral cortex microvessels of rats fed different amounts of n-3 PUFA (low vs. adequate vs. high) was studied. In parallel, the glucose uptake was measured in primary cultures of rat brain endothelial cells (RBEC) exposed to supplemental long chain n-3 PUFA, docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, or to arachidonic acid (AA). Western immunoblotting analysis showed that endothelial GLUT1 significantly decreased (−23%) in the n-3 PUFA-deficient microvessels compared to control ones, whereas it increased (+35%) in the microvessels of rats fed the high n-3 PUFA diet. In addition, binding of cytochalasin B indicated that the maximum binding to GLUT1 (Bmax) was reduced in deficient rats. Incubation of RBEC with 15 μM DHA induced the membrane DHA to increase at a level approaching that of cerebral microvessels isolated from rats fed the high n-3 diet. Supplementation of RBEC with DHA or EPA increased the [3H]-3-O-methylglucose uptake (reflecting the basal glucose transport) by 35% and 50%, respectively, while AA had no effect. In conclusion, we suggest that n-3 PUFA can modulate the brain glucose transport in endothelial cells of the blood–brain barrier, possibly via changes in GLUT1 protein expression and activity.  相似文献   

7.
In hypoxic or ischemic states the release of fatty acids is proposed to have several harmful effects on brain structure and function. We therefore decided to study brain FFA in a simple, clinically related animal model resembling intrauterine perinatal asphyxia (PA). Cerebral blood flow (CBF), brain fatty acids (C14:0, C16:1, C16:0, C18:1, C1 8:0, sigma C), plasma glucose, lactate, beta-hydroxybutyrate (beta-OHB), non-esterified fatty acids (NEFA) and insulin were determined in PA and compared to the normoxic state. Brain C 14:0 FFA were not significantly different from normoxic rats. Brain FFA C 16:0 were comparable between groups but significantly decreased at 20 min of PA. C 18:0 FFA showed a trend to increase with the length of PA reaching significance at 10 min of asphyxia only and were declining at 20 min, however, not significantly. Brain C 16:1 and C 18:1 FFA concentrations were comparable between groups. The parameters cerebral blood flow, glucose and lactate showed a stepwise and significant increase with the length of PA, whereas beta-HOB, NEFA and insulin showed no changes. CBF, glucose and lactate showed a strong association whereas other parameters failed to correlate with each other. Only inconsistent trends of increased brain FFA were found and the association between brain glucose and brain FFA could be ruled out. Although CBF was manifold and significantly elevated in PA, brain FFA pattern suggests that the increase of CBF is obviously not mediated by brain FFA. We conclude that FFA may not be involved in the early phase-pathogenesis of PA.  相似文献   

8.
Zhang Z  Li X  Wang H  Guo C  Gao L  Liu L  Gao R  Zhang Y  Li P  Wang Z  Li Y  Liu G 《Biological trace element research》2011,144(1-3):525-528
Serum concentrations of sodium, potassium, magnesium, and iron were measured in dairy cows with subclinical ketosis. Compared with healthy cows, the subclinically ketotic cows had significantly higher levels of non-esterified fatty acids and β-hydroxybutirate in serum and significantly lower levels of blood glucose (p?相似文献   

9.
Livers from fed rats were perfused with whole rat blood and infused with oleate to maintain constant concentrations of serum non-esterified fatty acids over a wide physiological range. Infusion of insulin opposed the antilipogenic effects of increasing concentrations of serum non-esterified fatty acids. Secretion of very-low-density-lipoprotein triacylglycerols was directly proportional to the concentration of serum non-esterified fatty acids and was increased by insulin. The secretion of newly-synthesized fatty acids in very-low-density-lipoprotein triacylglycerols decreased with increasing concentrations of serum non-esterified fatty acid. Insulin opposed this change. Cholesterol biosynthesis was unaffected by alterations in concentration of serum non-esterified fatty acid but was increased by insulin. Equilibrium concentrations of perfusate lactate and glucose were increased by serum non-esterified fatty acids but steady-state rates of hepatic glucose output and lactate uptake were unchanged. Insulin decreased perfusate glucose concentrations and abolished the increase in its concentration that resulted from increases in non-esterified fatty acid concentrations.  相似文献   

10.
Impaired glucose transport across brain tissue barriers causes infantile seizures, developmental delay and acquired microcephaly. Since the first report in 1991 (De Vivo et al, NEJM, 1991) 17 patients have been identified with the glucose transporter protein syndrome (GTPS). The diagnostic feature of the syndrome is an unexplained hypoglycorrhachia in the clinical setting of an infantile epileptic encephalopathy. We review our clinical experience by highlighting one illustrative case: a 6-year old girl who presented at age 2 months with infantile seizures and hypoglycorrhachia. The CSF/blood glucose ratio was 0.33. DNA sequencing identified a missense mutation in exon 7 (C1108T). Erythrocyte GLUT1 immunoreactivity was normal. The time course of 3-0-methyl-glucose (3OMG) uptake by erythrocytes of the patient was 46% that of mother and father. The apparent Km was similar in all cases (2–4 mmol/L), but the apparent Vmax in the patient was only 28% that of the parents (500 versus 1,766 fmol/s/106RBC; p < 0.004). In addition, a 3-month trial of oral thioctic acid also benefited the patient and increased the Vmax to 935 fmol/s/106 RBC (p < 3 × 10–7). Uptake of dehydroascorbic acid by erythrocytes of the patient was impaired to the same degree as that of 3OMG (Vmax was 38% of that of the mother's), which supports previous observations of GLUT1 being multifunctional. These studies confirm the molecular basis of the GTPS and the multifunctional role of GLUT1. The need for more effective treatment is compelling.  相似文献   

11.
Despite successful use of the ketogenic diet (KD) for the treatment of drug-resistant epilepsy, its mechanism of action is unclear. After KD-feeding, increased plasma D-beta-hydroxybutyrate (BHB) levels appear to be important for protection against seizures. We hypothesized that the KD leads to metabolic changes in the brain, which are reflected in the hippocampal extracellular fluid (hECF). CD1 mice were fed control or KD for 2-3 weeks since weaning. In vivo microdialysis of hECF was used to measure the levels of glucose, lactate, as well as BHB under basal conditions and during 30 min stimulation with 60 mM K(+), which was retrodialysed. The hECF BHB concentration in KD-fed mice was determined as 43.4±10.1 μM using the zero-flow method and 50.7±5.5 μM based on in vitro recovery. The total BHB concentration in brain homogenate from KD-fed mice was 180 nmol/g. The intracellular BHB concentration is therefore estimated to be about 3-fold higher than the extracellular level, which suggests that BHB in adolescent mouse brains may not be quickly metabolized. The basal hECF glucose concentration was 30% lower in KD-fed mice, indicating that glucose may be less important as an energy source. Lactate levels were similar in control and KD-fed mice. High potassium stimulation elevated lactate by 3-3.5-fold and decreased glucose by 40-50% in both diet groups, consistent with similar anaerobic and aerobic metabolism in both diet groups during high hippocampal activity. Overall, these data (1) defined the BHB concentration in the hippocampal extracellular fluid in KD-fed mice and (2) showed lower glucose metabolism compared to control diet-fed mice. This work will now enable other researchers to mimic the hippocampal extracellular environment in experiments aimed at deciphering the mechanisms of the KD.  相似文献   

12.
Abstract— The concentrations of free amino acids in the plasma and cerebrospinal fluid from control subjects and from patients suffering from epilepsy and Spielmeyer-Vogt-Batten disease were determined using an automatic amino acid analyser. It was found that the plasma/cerebrospinal fluid ratio of amino acid concentrations showed the variation in the amounts of free amino acids in epilepsy more clearly than the cerebrospinal fluid levels alone.  相似文献   

13.
This work analyzes a mathematical model for the metabolic dynamics of a cone photoreceptor, which is the first model to account for energy generation from fatty acids oxidation of shed photoreceptor outer segments (POS). Multiple parameter bifurcation analysis shows that joint variations in external glucose, the efficiency of glucose transporter 1 (GLUT1), lipid utilization for POS renewal, and oxidation of fatty acids affect the cone’s metabolic vitality and its capability to adapt under glucose-deficient conditions. The analysis further reveals that when glucose is scarce, cone viability cannot be sustained by only fueling energy production in the mitochondria, but it also requires supporting anabolic processes to create lipids necessary for cell maintenance and repair. In silico experiments are used to investigate how the duration of glucose deprivation impacts the cell without and with a potential GLUT1 or oxidation of fatty acids intervention as well as a dual intervention. The results show that for prolonged duration of glucose deprivation, the cone metabolic system does not recover with higher oxidation of fatty acids and requires greater effectiveness of GLUT1 to recover. Finally, time-varying global sensitivity analysis (GSA) is applied to assess the sensitivity of the model outputs of interest to changes and uncertainty in the parameters at specific times. The results reveal a critical temporal window where there would be more flexibility for interventions to rescue a cone cell from the detrimental consequences of glucose shortage.  相似文献   

14.
This review focuses on recent research on the metabolic function of fish brain. Fish brain is isolated from the systemic circulation by a blood-brain barrier that allows the transport of glucose, monocarboxylates and amino acids. The limited information available in fishes suggests that oxidation of exogenous glucose and oxidative phosphorylation provide most of the ATP required for brain function in teleosts, whereas oxidation of ketones and amino acids occurs preferentially in elasmobranchs. In several agnathans and benthic teleosts brain glycogen levels rather than exogenous glucose may be the proximate glucose source for oxidation. In situations when glucose is in limited supply, teleost brains utilize other fuels such as lactate or ketones. Information on use of lipids and amino acids as fuels in fish brain is scarce. The main pathways of brain energy metabolism are changed by several effectors. Thus, several parameters of brain energy metabolism have been demonstrated to change post-prandially in teleostean fishes. The absence of food in teleosts elicits profound changes in brain energy metabolism (increased glycogenolysis and use of ketones) in a way similar to that demonstrated in mammals though delayed in time. Environmental factors induce changes in brain energy parameters in teleosts such as the enhancement of glycogenolysis elicited by pollutants, increased capacity for anaerobic glycolysis under hypoxia/anoxia or changes in substrate utilization elicited by adaptation to cold. Furthermore, several studies demonstrate effects of melatonin, insulin, glucagon, GLP-1, cortisol or catecholamines on energy parameters of teleost brain, although in most cases the results are quite preliminary being difficult to relate the effects of those hormones to physiological situations. The few studies performed with the different cell types available in the nervous system of fish allow us to hypothesize few functional relationships among those cells. Future research perspectives are also outlined.  相似文献   

15.
The GLUT2 glucose transporter and the K-ATP-sensitive potassium channels have been implicated as an integral part of the glucose-sensing mechanism in the pancreatic islet beta cells. The expression of GLUT2 and K-ATP channels in the hypothalamic region suggest that they are also involved in a sensing mechanism in this area. The hypothalamic glial cells, known as tanycytes alpha and beta, are specialized ependymal cells that bridge the cerebrospinal fluid and the portal blood of the median eminence. We used immunocytochemistry, in situ hybridization and transport analyses to demonstrate the glucose transporters expressed in tanycytes. Confocal microscopy using specific antibodies against GLUT1 and GLUT2 indicated that both transporters are expressed in alpha and beta tanycytes. In addition, primary cultures of mouse hypothalamic tanycytes were found to express both GLUT1 and GLUT2 transporters. Transport studies, including 2-deoxy-glucose and fructose uptake in the presence or absence of inhibitors, indicated that these transporters are functional in cultured tanycytes. Finally, our analyses indicated that tanycytes express the K-ATP channel subunit Kir6.1 in vitro. As the expression of GLUT2 and K-ATP channel is linked to glucose-sensing mechanisms in pancreatic beta cells, we postulate that tanycytes may be responsible, at least in part, for a mechanism that allows the hypothalamus to detect changes in glucose concentrations.  相似文献   

16.
Epilepsy is a serious neurological disease that responds to two very different treatments involving lipids. Clinically, it responds to a state of ketosis induced by a very high-fat 'ketogenic' diet. Experimentally, in vitro and in vivo models demonstrate that injection or infusion of free (non-esterified) polyunsaturates such as arachidonate and docosahexaenoate also reduces seizure susceptibility. In our experience, rats on a very high-fat ketogenic diet not only have mild-to-moderate ketosis, but also have raised serum free fatty acids. Some polyunsaturates, particularly linoleate and alpha-linolenate, are relatively easily beta-oxidized and are therefore ketogenic. We conclude that raised levels of free plasma polyunsaturates could contribute to the beneficial effect of the ketogenic diet in refractory epilepsy not only by helping sustain ketosis, but also by their own direct (though poorly defined) antiseizure effects.  相似文献   

17.
Exogenous bovine growth hormone at a dose of 0.1 mg kg-1 liveweight increased yields of milk and milk constituents and milk fat content when injected over 5 days into ewes in mid-lactation. These changes in milk production were associated with changes in the supply to, and utilization of, nutrients by leg muscle and mammary tissues. Arterial concentrations of glucose and non-esterified fatty acids increased significantly, concentrations of lactate and 3-hydroxybutyrate tended to increase, and concentrations of triglycerides associated with very low-density lipoproteins decreased significantly. Growth hormone increased mammary uptake of non-esterified fatty acids, decreased mammary uptake of very low-density lipoproteins and tended to reduce the release of lactate from leg muscle. Oxidation of non-esterified fatty acids in the whole body and mammary tissue was increased by growth hormone and there was a tendency for reduction of glucose oxidation in mammary tissues. During injection of growth hormone, blood flow to leg muscle and mammary tissues increased as did the calculated ratio of blood flow; milk yield. These changes in blood flow, together with changes in arterial concentrations and tissue utilizations of key metabolites, were sufficient to account for the synthesis of extra milk and milk constituents.  相似文献   

18.
We have previously shown that glucose utilization and glucose transport were impaired in the brain of rats made deficient in n-3 polyunsaturated fatty acids (PUFA). The present study examines whether n-3 PUFA affect the expression of glucose transporter GLUT1 and glucose transport activity in the endothelial cells of the blood-brain barrier. GLUT1 expression in the cerebral cortex microvessels of rats fed different amounts of n-3 PUFA (low vs. adequate vs. high) was studied. In parallel, the glucose uptake was measured in primary cultures of rat brain endothelial cells (RBEC) exposed to supplemental long chain n-3 PUFA, docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, or to arachidonic acid (AA). Western immunoblotting analysis showed that endothelial GLUT1 significantly decreased (-23%) in the n-3 PUFA-deficient microvessels compared to control ones, whereas it increased (+35%) in the microvessels of rats fed the high n-3 PUFA diet. In addition, binding of cytochalasin B indicated that the maximum binding to GLUT1 (Bmax) was reduced in deficient rats. Incubation of RBEC with 15 microM DHA induced the membrane DHA to increase at a level approaching that of cerebral microvessels isolated from rats fed the high n-3 diet. Supplementation of RBEC with DHA or EPA increased the [(3)H]-3-O-methylglucose uptake (reflecting the basal glucose transport) by 35% and 50%, respectively, while AA had no effect. In conclusion, we suggest that n-3 PUFA can modulate the brain glucose transport in endothelial cells of the blood-brain barrier, possibly via changes in GLUT1 protein expression and activity.  相似文献   

19.
In media containing glucose, lactate stimulates the metabolism of gonococci at concentrations that simulate conditions in vivo. Nuclear magnetic resonance (NMR) spectroscopy of (13)C-labelled lipids obtained from gonococci grown in a synthetic medium with (13)C-labelled lactate and unlabelled glucose (culture A), (13)C-labelled glucose alone (culture B) or (13)C-labelled glucose and unlabelled lactate (culture C) showed lactate carbon was not present in glycerol/ethanolamine residues of lipids from culture A. This indicated that, in the presence of glucose, lactate gluconeogenesis is shut down. Hence, the stimulation of metabolism could result from the production of extra energy because lactate is used solely for conversion to acetyl-CoA, the precursor of fatty acid synthesis and the components of the tricarboxylic acid cycle. In this paper, additional evidence for lack of gluconeogenesis has been sought using a different approach. The carbohydrate moieties of lipopolysaccharide (LPS) have been examined for lactate carbon after gonococci were grown with lactate and glucose. Two methods were used: NMR spectroscopy of (13)C-labelled lipopolysaccharide purified from the three cultures described above showed that, in the presence of glucose, lactate carbon, in contrast to glucose carbon, was not in the carbohydrate moiety. Also, (14)C-labelled lactate was added to a culture containing unlabelled glucose and lactate (culture A) and [(14)C]glucose to cultures containing unlabelled glucose without unlabelled lactate (culture B) and with unlabelled lactate (culture C). When LPS samples purified from these cultures were subjected to hydrazinolysis, the ratio of the radioactivity of water-soluble products (carbohydrate moieties) to those of chloroform-soluble products (fatty acids) was much lower when [(14)C]lactate was used in culture A, than when [(14)C]glucose was used in cultures B and C. Thus, in the presence of glucose, lactate carbon, unlike glucose carbon, is incorporated predominantly into fatty acids of LPS, not into its carbohydrate moieties. There is no doubt, therefore, that gluconeogenesis is shut off when lactate is present with glucose and there is a consequent stimulation of metabolism. This probably occurs in vivo on mucous surfaces, where gonococci are surrounded by a mixture of glucose and lactate in the secretions.  相似文献   

20.
Fatty acid synthesis was studied in freshly isolated type II pneumocytes from rabbits by 3H2O and (U-14C)-labeled glucose, lactate and pyruvate incorporation and the activity of acetyl-CoA carboxylase. The rate of lactate incorporation into fatty acids was 3-fold greater than glucose incorporation; lactate incorporation into the glycerol portion of lipids was very low but glucose incorporation into this fraction was approximately equal to incorporation into fatty acids. The highest rate of de novo fatty acid synthesis (3H2O incorporation) required both glucose and lactate. Under these circumstances lactate provided 81.5% of the acetyl units while glucose provided 5.6%. Incubations with glucose plus pyruvate had a significantly lower rate of fatty acid synthesis than glucose plus lactate. The availability of exogenous palmitate decreased de novo fatty acid synthesis by 80% in the isolated cells. In a cell-free supernatant, acetyl-CoA carboxylase activity was almost completely inhibited by palmitoyl-CoA; citrate blunted this inhibition. These data indicate that the type II pneumocyte is capable of a high rate of de novo fatty acid synthesis and that lactate is a preferred source of acetyl units. The type II pneumocyte can rapidly decrease the rate of fatty acid synthesis, probably by allosteric inhibition of acetyl-CoA carboxylase, if exogenous fatty acids are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号