首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A rapid, selective and sensitive HPLC assay has been developed for the routine analysis of amoxicillin in rat plasma, gastric juice aspirate and gastric tissue which is applicable to low concentrations of amoxicillin (<1 microg mL(-1)) or small sample volumes. Amoxicillin was converted, via an internal rearrangement, to form a fluorescent product which was subsequently recovered using liquid-liquid extraction. A Kromasil ODS 3 microm (150 x 3.2 mm I.D.) column was maintained at 40 degrees C and used with a mobile phase consisting of methanol-water (55:45, v/v). Fluorimetric detection was at an lambda(ex) of 365 nm and an lambda(em) of 445 nm. The limits of quantitation for amoxicillin were 0.1 microg mL(-1) for gastric juice aspirate (500 microL), 0.5 microg mL(-1) for plasma (50 microL) and 0.075 microg g(-1) for gastric tissue (250 mg). The method was linear up to at least 15 microg mL(-1) in gastric juice aspirate, up to 200 microg mL(-1) in plasma and up to 100 microg g(-1) in gastric tissue, with inter- and intra-day RSDs being less than 19%. The assay has been applied to the measurement of amoxicillin in rat plasma, gastric juice aspirate and gastric tissue for pharmacokinetic studies in individual rats.  相似文献   

2.
A simple and selective ion-pair HPLC method has been developed for the analysis of clarithromycin in aqueous solutions and in gastric juice. A Hypersil ODS 5-μm (150 × 4.6 mm I.D.) column was used with a mobile phase consisting of acetonitrile-aqueous 0.05 M phosphate buffer (pH 4.6) containing 5 mM 1-octanesulphonic acid (50:50, v/v). The column temperature was 50°C and detection was by UV absorption (210 nm). The limits of detection of 50-μl samples were 0.4 μg/ml (aqueous) and 0.78 μg/ml (0.5 ml gastric juice) or better. The assay was linear in the range of 1.56 to 100 μg/ml with r2 values greater than 0.99. The recovery from the gastric juice samples was 98.5±2.9%. The method was applied successfully to determine the stability of clarithromycin in 0.01 M HCl and gastric juice.  相似文献   

3.
A rapid, selective and sensitive HPLC assay has been developed for the routine analysis of metronidazole in small volumes of rat plasma, gastric aspirate and gastric tissue. The extraction procedure involves liquid–liquid extraction and a protein precipitation step. A microbore Hypersil ODS 3 μm (150×2.1 mm I.D.) column was used with a mobile phase consisting of acetonitrile–aqueous 0.05 M potassium phosphate buffer (pH 7) containing 0.1% triethylamine (10:90). The column temperature was at 25°C and the detection was by UV absorbance at 317 nm. The limit of detection was 0.015 μg ml−1 for gastric juice aspirate and plasma and 0.010 μg g−1 for gastric tissue (equivalent to 0.75 ng on-column). The method was linear up to a concentration of 200 μg ml−1 for plasma and gastric juice aspirate and up to 40 μg g−1 for tissue, with inter- and intra-day relative standard deviations less than 14%. The measured recovery was at least 78% in all sample matrices. The method proved robust and reliable when applied to the measurement of metronidazole in rat plasma, gastric juice aspirate and gastric tissue for pharmacokinetic studies in individual rats.  相似文献   

4.
Background. Amoxicillin and clarithromycin are key antibiotics in proton pump inhibitor‐based Helicobacter pylori eradication therapies. Aims. To study gastric mucus and tissue concentrations and collect basic data about optimal antibacterial doses. Methods. Plasma, gastric mucosa and gastric juice antibiotic concentrations were measured following either low‐ or high‐dose amoxicillin (750 or 1000 mg bid) and clarithromycin (400 or 500 mg bid) given in combination with omeprazole 20 mg bid to 12 male volunteers in an open crossover design. Gastric juice and mucosal biopsy collection was performed either 2 (n = 6) or 6 hours (n = 6) after dosing. Results. Amoxicillin concentrations 2 hours after high dosage were gastric juice > gastric body > antral mucosa > plasma. At 6 hours, plasma and gastric juice concentrations were still above the MIC for amoxicillin‐susceptible bacteria but no antibiotic was detectable in mucosa samples. Clarithromycin concentrations after high dosage were gastric juice > mucosa > serum; all above the MIC for clarithromycin‐susceptible bacteria at both 2 and 6 hours. Conclusions. Both dosage regimens provided effective antibiotic concentrations in gastric juice at 2 hours. After dosing, both antibiotics demonstrated high gastric tissue concentrations via local diffusion while clarithromycin also provided sustained delivery (6 hours) via gastric mucosa penetration.  相似文献   

5.
Previous studies have indicated that plasma levels of peptide YY (PYY) increase significantly after a meal. The purpose of this study was to characterize the interaction of PYY and secretin in the inhibition of gastric acid secretion, and to determine whether PYY can influence acid-induced inhibition of gastric acid secretion in conscious dogs. I.v. administration of PYY at 200 pmol/kg/h inhibited pentagastrin (1 microgram/kg/h)-stimulated gastric acid output (P less than 0.05). PYY further augmented i.v. secretin-induced inhibition of pentagastrin-stimulated gastric acid output by 32 +/- 7%, and intraduodenal hydrochloric acid-induced inhibition of pentagastrin-stimulated gastric acid output by 40 +/- 12%. The mean integrated release of secretin response to duodenal acidification (3.9 +/- 1.0 ng-[0-60] min/ml) was not affected by PYY (3.3 +/- 0.9 ng-[0-60] min/ml). The present study demonstrates that PYY can interact with secretin and duodenal acidification in an additive fashion to inhibit pentagastrin-stimulated gastric acid secretion. Our results suggest that several hormones that are released postprandially can interact with each other to inhibit gastric acid secretion.  相似文献   

6.
The role of vagus nerve was studied in the development of gastric mucosal damage induced by ethanol (ETOH). The investigations were carried out on Sprague-Dawley rats. The gastric mucosal damage was produced by i.g. administration of 1 ml 96% ETOH. Acute surgical vagotomy (ASV) was carried out 30 min, chronic surgical vagotomy (CSV) 14 days before the ETOH application. The animals were sacrificed at 0, 1, 5, 15, 60 min after ETOH. Evans blue (EB) (1 mg/100 g) was given i.v. 15 min before autopsy. The number and severity of lesions the EB accumulation of the gastric juice and gastric mucosa were noted. It was found, that: 1. The vascular permeability increased after ETOH treatment at an early state (within 1-5 min) in association to the macroscopic appearance of erosions. 2. The number and extension of lesions, the EB concentrations in gastric juice and gastric mucosa were significantly higher both after ASV and CSV. 3. Surgical vagotomy alone did not increase the vascular permeability. 4. No significant ulcer formation was observed in vagotomized rats without ETOH treatment. It was concluded, that 1. Both ASV and CSV enhanced the development of gastric mucosal injury induced by ethanol. 2. Neither acute nor chronic surgical vagotomy exerted an effect of the development of mucosal injury and vascular permeability without the application of the noxious agent. 3. The further increase of enhanced vascular permeability by vagotomy probably has an etiologic role in the aggravating effect of ASV and CSV on the development of chemical-induced lesions.  相似文献   

7.
A rapid and selective HPLC method has been developed for the separation and quantitation of metronidazole and its hydroxylated metabolite in human plasma, saliva and gastric juice. The assay requires a simple protein precipitation step prior to analysis and is selective, sensitive and reproducible. The limits of quantitation (0/5-ml sample) were at least 0.25 μg/ml for metronidazole and 0.20 μg/ml for its hydroxy metabolite. A Hypersil ODS 5 μm (150×4.6 mm I.D.) column was used with a mobile phase of acetonitrile-aqueous 0.05 M potassium phosphate buffer (pH 7) containing 0.1% triethylamine (10:90) delivered at a flow-rate of 1.0 ml/min.  相似文献   

8.
Immunoreactive calcitonin (iCT) has been demonstrated in human gastric juice after immunoextraction with immobilized antibodies and subsequent radioimmunoassay. The basal levels were 4.5 +/- 3.1 (mean +/- SD) pg-Eq/ml gastric juice; range 1.2-9.1 pg-Eq/ml; n = 7, and after stimulatory gastric secretion test with pentagastrin 0.3 +/- 0.2 pg-Eq/ml; range 0.1-0.7 pg-Eq/ml; n = 7 (p less than 0.01). The main fraction of iCT from gastric juice eluted in the same region as synthetic human calcitonin (hCT) on Sephadex G-75 gel chromatography. Reverse phase chromatography in a fast protein liquid chromatography (FPLC) system revealed a slightly less hydrophobic character of the iCT from gastric juice compared to synthetic monomeric hCT. The results were further confirmed by using an additional antiserum. In plasma, the calcitonin (CT) levels were after immunoextraction at the basal state 6.6 +/- 1.7 pg-Eq/ml (mean +/- SD); range 5.1-10.1 pg-Eq/ml; n = 7 and after pentagastrin stimulation 9.4 +/- 5.4 pg-Eq/ml; range 6.3-18.5 pg-Eq/ml; n = 7.  相似文献   

9.
A rapid, selective and sensitive high-performance liquid chromatographic method with spectrophotometric detection was developed for the determination of clarithromycin in human plasma. Liquid-liquid extraction of clarithromycin and norverapamil (as internal standard) from plasma samples was performed with n-hexane/1-butanol (98:2, v/v) in alkaline condition followed by back-extraction into diluted acetic acid. Chromatography was carried out using a CN column (250 mm x 4.6 mm, 5 microm) under isocratic elution with acetonitrile-50 mM aqueous sodium dihydrogen phosphate (32:68, v/v), pH 4.5. Detection was made at 205 nm and analyses were run at a flow-rate of 1.0 ml/min at 40 degrees C. The analysis time was less than 11 min. The method was specific and sensitive with a quantification limit of 31.25 ng/ml and a detection limit of 10 ng/ml in plasma. The mean absolute recovery of clarithromycin from plasma was 95.9%, while the intra- and inter-day coefficient of variation and percent error values of the assay method were all less than 9.5%. Linearity was assessed in the range of 31.25-2000 ng/ml in plasma with a correlation coefficient of greater than 0.999. The method was used to analyze several hundred human plasma samples for bioavailability studies.  相似文献   

10.
A liquid chromatographic method with UV detection for the quantification of nimesulide (N) and hydroxynimesulide (M1) in rat plasma, cerebrospinal fluid (CSF) and brain tissue is reported. Plasma samples (250 microl) and brain homogenates added with the right amount of the internal standard (I.S., 2'-(cyclohexyloxy)-4'-nitrophenyl methanesulphonanilide, NS398) are extracted on C(18) disposable cartridges by solid-phase extraction (SPE), while CSF samples are analyzed without any extraction. The separation is performed at room temperature on a Waters Symmetry C(18) 3.5 microm (150x4.6 mm I.D.) column with acetonitrile-sodium citrate buffer pH 3.00 (53:47, v/v) as mobile phase, at a flow-rate of 1.1 ml/min and detection at 240 nm. The retention times are 3.3, 6.0 and 9.9 min for M1, N and I.S., respectively. The lower limits of quantitation for either nimesulide and M1 are 25 ng/ml for plasma, 20 ng/ml for CSF and 25 ng/g for brain tissue. The calibration curves are linear up to 10,000 ng/ml for plasma, 5000 ng/ml for CSF and 5000 ng/g for brain tissue. This new assay can be applied to the study of the role of nimesulide in the modulation of neuroinflammatory processes.  相似文献   

11.
Microdialysis is an increasingly employed technique for the determination of tissue pharmacokinetics. A high-performance liquid chromatography method for the quantitative determination of caspofungin in human microdialysates with amperometric detection is described. Since microdialysis of caspofungin is performed with a 100,000 molecular mass cut-off membrane, microdialysates contain protein that was precipitated at pH 4 with acetonitrile. Addition of 1-propanol (33%, v/v) to the sample extract improved the analytical recovery to 81-89%. Caspofungin and the internal standard clarithromycin were separated isocratically on a cyanopropyl silica column using acetonitrile-0.05 M citrate (33:67, v/v), adjusted to an apparent pH of 6.9, at a flow rate of 1.0 ml/min, and amperometric detection at +950 mV oxidation potential. Within-day and between-day imprecision and inaccuracy were <11%. The lower limit of quantification was 0.07 microg/ml. The method was applied to in vitro microdialysis experiments. Ringer's solution containing 1% (w/v) human albumin was used for the perfusing and surrounding medium, respectively. Albumin did not entirely prevent adsorption of caspofungin to the surface of membrane and/or tubing. When the binding-sites were saturated with albumin plus caspofungin prior to the start of sampling, the percentage of drug appearing in the microdialysate ("recovery") remained stable over the concentration range tested.  相似文献   

12.
Early radiation toxicity is characterized by nausea and vomiting. We have previously shown that gastric emptying, gastric motility, and gastric secretion were suppressed after total body exposure to irradiation. In the present studies, we evaluated the relation between vomiting and gastric function in nine rhesus monkeys and explored the possible role of prostaglandins (PG) in these phenomena. The concentration of PG in plasma and gastric juice was determined using a standard radioimmunoassay and gastric acid output was measured concurrently using a marker dilution technique. The animals were studied in the basal state and after total body exposure to 800 cGy 60Co delivered at a rate of 500 cGy/min. Acid output was abolished from 40 min to 2 h after irradiation but had returned to preirradiation levels 2 days later. Plasma PGE2 and PGI2 (as measured by 6-keto-PGF1 alpha determination) were not significantly modified by irradiation. In contrast, irradiation produced an immediate significant increase (P less than 0.05) in gastric juice concentration of PGE2 (318 +/- 80 to 523 +/- 94 pg/ml; mean +/- SE) and PGI2 (230 +/- 36 to 346 +/- 57 pg/ml); both had returned to basal levels 2 days later. Thus, an increase in gastric juice concentration of both PGE2 and PGI2 is associated with the radiation induced suppression of acid output.  相似文献   

13.
This paper describes a method of determining clioquinol levels in hamster plasma and tissue by means of HPLC and electrochemical detection. Clioquinol was separated on a Nucleosil C18 300 mm x 3.9 mm i.d. 7 microm column at 1 ml/min using a phosphate/citrate buffer 0.1M (400 ml) with 600 ml of a methanol:acetonitrile (1:1, v/v) mobile phase. The retention times of clioquinol and the IS were, respectively, 11.6 and 8.1 min; the quantitation limit (CV>8%) was 5 ng/ml in plasma and 10 ng/ml in tissues. The intra- and inter-assay accuracies of the method were more than 95%, with coefficients of variation between 3.0 and 7.7%, and plasma and tissue recovery rates of 72-77%. There was a linear response to clioquinol 5-2000 ng/ml in plasma, and 10-1000 ng/g in tissues. The method is highly sensitive and selective, makes it possible to study the pharmacokinetics of plasma clioquinol after oral administration and the distribution of clioquinol in tissues, and could be used to monitor plasma clioquinol levels in humans.  相似文献   

14.
A reliable high-performance liquid chromatographic method has been validated for determination of gallamine in rat plasma, muscle tissue and microdialysate samples. A C18 reversed-phase column with mobile phase of methanol and water containing 12.5 mM tetrabutyl ammonium (TBA) hydrogen sulphate (22:78, v/v) was used. The flow-rate was 1 ml/min with UV detection at 229 nm. Sample preparation involved protein precipitation with acetonitrile for plasma and muscle tissue homogenate samples. Microdialysate samples were injected into the HPLC system without any sample preparation. Intra-day and inter-day accuracy and precision of the assay were <13%. The limit of quantification was 1 μg/ml for plasma, 1.6 μg/g for muscle tissue and 0.5 μg/ml for microdialysate samples. The assay was applied successfully to analysis of samples obtained from a pharmacokinetic study in rats using the microdialysis technique.  相似文献   

15.
A high-performance liquid chromatographic method was developed for the determination of a chemoprotective agent, 2-(allylthio)pyrazine (I), in human plasma and urine, and in rat blood and tissue homogenate using diazepam as an internal standard. The sample preparation was simple; 2.5 volumes of acetonitrile were added to the biological sample to deproteinize it. A 50–100 μl aliquot of the supernatant was injected onto a C18 reversed-phase column. The mobile phase employed was acetonitrile–water (55:45, v/v), and it was run at a flow-rate of 1.5 ml/min. The column effluent was monitored using an ultraviolet detector at 330 nm. The retention times for I and the internal standard were 4.0 and 5.1 min, respectively. The detection limits of I in human plasma and urine, and in rat tissue homogenate (including blood) were 20, 20 and 50 ng/ml, respectively. The coefficients of variation of the assay (within-day and between-day) were generally low (below 6.1%) in a concentration range from 0.02 to 10 μg/ml for human plasma and urine, and for rat tissue homogenate. No interferences from endogenous substances were found.  相似文献   

16.
A simple, selective, sensitive and precise high-performance liquid chromatographic plasma assay for the antihypertensive drugs, irbesartan and hydrochlorothiazide is described. Good chromatographic separation was achieved using a Supelcocil C(18) (5 micrometer 15 cmx4.6 mm) column and a mobile phase consisting of 10 mM potassium dihydrogen phosphate:methanol:acetonitrile (5:80:15 v/v/v) (pH:2.5) while at a flow-rate of 1.0 ml min(-1). Irbesartan and hydrochlorothiazide were detected at 275 nm and were eluted 5.8 and 7.8 min, respectively, after injection. No endogenous substances were found to interfere. The method utilizes protein precipitation with acetonitrile as the only sample preparation involved prior to reversed-phase high-performance liquid chromatography. No internal standard was required. Linearity range for irbesartan and hydrochlorothiazide was 10.0-60.0 microgram ml(-1) and 4.0-20.0 microgram ml(-1), respectively. The determination of intra- and inter-day precision (RSD) was less than 2.5 and 3.5%, at all concentration levels, while the inter- and intra-day accuracy (% difference) was less than 4.9-6.2%. This method is being used in a therapeutic drug monitoring service to quantitate these therapeutic agents in patients for pharmacokinetic studies.  相似文献   

17.
We have developed and validated a sensitive and selective assay for the quantification of paclitaxel and its metabolites 6α,3′-p-dihydroxypaclitaxel, 3′-p-hydroxypaclitaxel and 6α-hydroxypaclitaxel in plasma, tissue, urine and faeces specimens of mice. Tissue and faeces were homogenized (approximately 0.1–0.2 g/ml) in bovine serum albumin (40 g/I) in water, and urine was diluted (1:5, v/v) in blank human plasma. Sample pretreatment involved liquid-liquid extraction of 200–1000 μl of sample with diethyl ether followed by automated solid-phase extraction using cyano Bond Elut column. 2′-Methylpaclitaxel was used as internal standard. The overall recovery of the sample pretreatment procedure ranged from 76 ot 85%. In plasma, the lower limit of detection (LOD) and the lower limit of quantitation (LLQ) are 15 and 25 ng/ml, respectively, using 200 μl of sample. In tissues, faeces and urine the LLQs are 25–100 ng/g, 125 ng/g and 25 ng/ml, respectively, using 1000 μl (faeces: 200 μl) of homogenized or diluted sample. The concentrations in the various biological matrices, for validation procedures spiked with known amounts of the test compounds, are read from calibration curves constructed in blank human plasma in the range 25–100 000 ng/ml for paclitaxel and 25–500 ng/ml for the metabolites. The accuracy and precision of the assay fall within the generally accepted criteria for bio-analytical assays.  相似文献   

18.
M Yoneda  H Raybould  Y Taché 《Peptides》1991,12(3):401-406
The effects of intracisternal and intravenous injections of the somatostatin analog, SMS 201-995, on gastric acid secretion were investigated in rats with pylorus ligation or gastric cannula. Intracisternal injection of SMS 201-995 induced a dose-related (0.1-0.3 microgram) and long-lasting stimulation of gastric acid output with a peak response at 3 h postinjection in conscious, pylorus-ligated rats. Intracisternal SMS 201-995 increased histamine levels in the portal blood, whereas plasma gastrin levels were not modified. Atropine, cimetidine and adrenalectomy abolished the stimulatory effect of intracisternal SMS 201-995 (0.3 microgram). SMS 201-995 (0.03 microgram), microinjected unilaterally into the dorsal vagal complex, increased gastric acid output in urethane anesthetized rats. SMS 201-995, injected intravenously at 0.5 microgram, did not alter gastric secretion, whereas higher doses (5-20 micrograms) resulted in a dose-related inhibition of gastric acid secretion in conscious pylorus-ligated rats. These data indicate that SMS 201-995, a selective ligand for somatostatin-1 receptor subtype, induces a centrally mediated stimulatory effect on gastric acid secretion in rats. The central action involves the parasympathetic system, muscarinic and H2 receptors as well as adrenal-dependent pathways.  相似文献   

19.
Fifty four patients with postresection gastritis and 13 healthy adults were examined. 141 microbial cultures belonging to 33 species were isolated from the gastric juice of the patients. In the healthy persons 27 cultures belonging to 7 species were isolated from the gastric juice. In the gastric juice of the patients there predominated enteric bacteria and enterococci (64.8 +/- 6.5 and 57.4 +/- 6.7 per cent respectively). Among the enteric bacteria Escherichia coli and Proteus spp. were the most frequent. Contamination of the gastric juice by such microbes amounted to 10(5)-10(9) microbial bodies per 1 ml. The isolates were mainly sensitive to gentamicin (84.8 +/- 2.9 per cent).  相似文献   

20.
Our objective was to investigate the effects of orange juice on the pharmacokinetics of pravastatin in rats and healthy volunteers. The pharmacokinetics of pravastatin (100 mg/kg p.o.) were assessed with water, orange juice, and carbohydrates (12.5 ml/kg over 30 min) and with acetic acid (0.1 M, pH 3.44). The pharmacokinetics of simvastatin (100 mg/kg p.o.) were assessed with water and orange juice. In addition, the pharmacokinetics (based on plasma levels) of pravastatin 80 mg/kg i.v. were assessed with water and orange juice (5 ml/kg) in rats. The pharmacokinetics of oral pravastatin (10 mg) were assessed when administered with water and orange juice (800 ml over 3 h) in a two-way crossover study in 14 healthy volunteers. Orange juice significantly increased the area under the curve (0-150 min) of pravastatin in rats. Orange juice had no effects on the pharmacokinetic parameters of intravenously administered pravastatin in rats. Carbohydrates and acetic acid with pH and concentration equivalent to those of orange juice also resulted in no statistically significant differences in pravastatin pharmacokinetic parameters in rats. Orange juice did not result in any significant differences in the pharmacokinetic parameters of simvastatin in rats. Orange juice significantly increased oatp1 and oatp2 mRNA and protein in the intestine of rats. Orange juice significantly increased the area under the curve (0-240 min) of pravastatin in healthy volunteers. In conclusion, orange juice increases the bioavailability of pravastatin administered orally. Oatp1 and oatp2 may be related to increases of pharmacokinetics of pravastatin by orange juice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号