首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
—The redistribution of rapidly migrating [3H]leucine-labelled proteins was studied using double ligatures applied to the vagus nerve and single ligatures, applied to the hypoglossal nerves. Rapidly migrating proteins accumulating for 16 h proximal to a distal ligature of the cervical vagus redistributed to give a retrograde accumulation distal to a second ligature. Within 6 h a substantial redistribution occurred indicating a rapid retrograde transport. After 21 h there was a further accumulation with 70 per cent of the labelled material accumulating at the distal end of the isolated nerve segment and 16 per cent accumulating at the proximal end. It was shown that about a half of the retrograde accumulation was dependent on the distal accumulation zone. Rapidly migrating proteins accumulated distal to a ligature applied to the hypoglossal nerve 16 h after labelling of the nerve cell bodies indicating that a rapid retrograde transport of labelled macromolecules occurs from the peripheral parts of the nerve in the tongue. Labelled proteins accumulated proximal to ligatures and transections of both the hypoglossal and vagus nerve when applied 16 h after labelling of the nerve cell bodies, indicating the presence of axonal proteins, migrating at a rate of transport intermediate to that of rapidly and slowly migrating proteins.  相似文献   

2.
Abstract— The redistribution of rapidly migrating [3H]leucine-labelled proteins and [3H]fucose-labelled glycoproteins was studied in ligated regenerating hypoglossal and vagus nerves of the rabbit. When regenerating and contralateral hypoglossal nerves were ligated 16 h after labelling of the nerve cell bodies, rapidly migrating proteins and glycoproteins accumulated distal to the ligatures indicating a rapid retrograde transport from the peripheral parts of the nerves within 6 h. The retrograde accumulation of both proteins and glycoproteins was greater on the regenerating side than on the contralateral side at both 1 and 5 weeks after a nerve crush. Labelled proteins and glycoproteins also accumulated proximal to the ligatures, indicating a delayed rapid anterograde phase of axonal transport. The accumulation of this phase was also greater on the regenerating side 1 week after a nerve crush for both labelled proteins and glycoproteins. One week after a crush of the cervical vagus nerve, rapidly migrating proteins and glycoproteins redistributed between he crush zone and a proximal ligature applied 16 h after labelling of the nerve cell bodies. A retrograde accumulation occurred distal to the ligature within 6 h, indicating a rapid retrograde transport from the crush zone.  相似文献   

3.
The effect of cycloheximide, a protein synthesis inhibitor, was studied on the axonal transport of noradrenergic synaptic vesicles and presynaptic muscarinic receptors, identified by in vitro binding of [3H]dihydrotetrabenazine and [3H]quinuclidinylbenzilate, respectively, in rat sciatic nerve. Cycloheximide (1.5 mg/kg) administered subcutaneously 2 h before ligation decreased by approximately 50% the accumulation of vesicles and receptors in the proximal segment above the ligature placed on the nerve; its action was detectable after a lag period of 10 h and disappeared 96 h after administration. Double ligatures were placed on the nerve at various time intervals between the first (distal) and the second (proximal) ligature, and the accumulation of vesicles and receptors proximal to the second ligature was measured; the first ligature diminished the accumulation above the second ligature. At an interval of 96 h between the first and the second ligature, cycloheximide completely prevented the accumulation of vesicles and receptors proximal to the second ligature. The effects of double ligatures and the response to cycloheximide treatment can best be explained on the assumption that an important proportion of synaptic vesicles and presynaptic receptors is being recycled in the nerve cell bodies after retrograde transport.  相似文献   

4.
Abstract— Anterograde and retrograde flux of axonal transported glycoproteins were examined in streptozotocin diabetic rats with 4 weeks'duration of the metabolic derangement.
[3H]Fucose and [14C]NeuNAc were injected into the fifth lumbar root ganglion and the accumulation of TCA-PTA insoluble activity proximal and distal to a sciatic nerve ligature was measured.
Accumulation of glycoproteins during 2 h collection periods was decreased distal to a ligature in diabetic animals whereas no abnormality of proximal accumulation was observed. These findings demonstrate an abnormality of the retrograde transport of glycoproteins in early experimental diabetes.  相似文献   

5.
Abstract— The transport, distribution and turnover of choline O -acetyltransferase (ChAc, EC 2.3.1.6) and acetylcholinesterase (AChE, EC 3.1.1.7) in the vagus and hypoglossal nerves were studied in adult rabbits. The enzymes accumulated proximally and distally to single and double ligatures on both nerves and thus indicated both a proximo-distal and retrograde flow of the enzymes. Double ligature experiments indicated that only 5–20 per cent of the enzymes were mobile in the axon. The rate of accumulation of both enzymes above a single ligature corresponded to the slow rate of axonal flow provided that all the enzymes were mobile, but to an intermediate or fast flow if only a small part of the enzymes was transported. The distribution of ChAc along the hypoglossal neurons was studied and only 2 per cent of ChAc was confined to cell bodies, 42 per cent was localized to the main hypoglossal nerve trunks and 56 per cent to the preterminal axons and axon terminals in the tongue. The ratio of AChE to ChAc was about 3 in the hypoglossal nerve and 32 in the vagus nerve.
Transection of the hypoglossal nerve was followed by a decrease in the activity of ChAc in the hypoglossal nucleus and nerve and in the axons and their terminals in the tongue. The activity of AChE decreased in the hypoglossal nucleus and nerve but not in the tongue. The half-life of ChAc in preterminal axons and terminals of the hypoglossal nerve was estimated to be 16-21 days from the results obtained on transport, axotomy and distribution of the enzyme. Intracisternal injection of colchicine inhibited the cellulifugal transport of both enzymes and led to an increase in enzyme activity in the hypoglossal nucleus.  相似文献   

6.
J J Frost  A C Smith  H N Wagner 《Life sciences》1986,38(17):1597-1606
The displacement of 3H-diprenorphine from opiate receptors by mu-selective opiates was measured in the mouse striatum and thalamus in vivo. In addition, the regional distribution of opiate receptor binding using 3H-diprenorphine, 3H-naloxone and 3H-lofentanil was measured. The displacement of 3H-diprenorphine by naloxone and carfentanil in vivo showed no differences in the striatum and thalamus suggesting that 3H-diprenorphine binds only to one opiate receptor subtype in vivo. This finding is substantiated by the observation that the mu selective ligands 3H-naloxone and 3H-lofentanil have the same in vivo distribution of receptor binding as 3H-diprenorphine. The implication of these findings for PET imaging of opiate receptor subtypes is discussed.  相似文献   

7.
—Administration of cycloheximide, 10 mg/kg s.c. led within 4 h to an approx 30% reduction of dopamine-β-hydroxylase (DBH) activity in the abdominal portion of rat sciatic nerves. At least two more hours elapsed before DBH activity in the distal part of these nerves began to fall. This pattern suggests reduced synthesis or delivery of DBH into axons but continued transport of previously delivered enzyme. Coinciding with the time at which DBH activity began to fall in distal segments of sciatic nerve, there was a marked reduction in the accumulation of DBH activity above a ligature in this region. Between 4 and 8 h after administration of cylcoheximide, 10 mg/kg, accumulation above a ligature was 70% less than in untreated nerves (P < 0.001), a reduction significantly greater (P < 0.05) than the accompanying 28% loss of baseline DBH activity. At the same time, the clearance of DBH activity from nerve regions distal to a ligature was greatly reduced. This pattern is consistent with the depletion of a minor but rapidly transported compartment of DBH. Six hours after administration of cylcoheximide, 10 mg/kg, the apparent subcellular distribution of DBH in distal regions of sciatic nerve was altered by a significant 36% loss in sedimentable DBH activity, with non-significant changes in othcr fractions. This suggests that rapidly transported DBH, depleted from the nerve by cycloheximide-induced inhibition of protein synthesis, is more highly associated with intraneuronal particles than is slowly transported or stationary DBH.  相似文献   

8.
Abstract— Orthograde and retrograde axoplasmic transport of selected axonal organelles were examined by monitoring accumulation of enzyme activities residing in various types of particles proximal and distal to a ligature placed on rat sciatic nerve as a function of time after tying. Proximal to the tie, activity of acetylcholinesterase (AChE, EC 3.1.1.7; probably in small endoplasmic reticulum-like particles) accumulated for 2 days; then, during the next 5 days, the accumulation disappeared. Activities of glutamic dehydrogenase (GDH, EC 1.4.1.3) and monoamine oxidase (MAO, EC 1.4.3.4) (both located in mitochondria) accumulated steadily for 7 days. Accumulation of monoamine oxidase activity was more rapid than that of glutamic dehydrogenase during the first day or two. Acid phosphatase (acid P'tase, EC 3.1.3.2; in lysosomes) activity also accumulated throughout the week of observation. Accumulation of all four enzyme activities proximal to the ligature was blocked by nerve crush or subepineurial vinblastine injection 1 cm or more proximal to the site of the tie. Distal to the ligature, AChE activity accumulated early (14 h), and then gradually disappeared in the course of the week. MAO activity also accumulated, with a maximum at 2 days, and no further change thereafter. GDH activity, on the other hand, showed little accumulation during the first 2 days, but did appear in modest amounts at the end of the week. Distal accumulation of acid P'tase kept pace with proximal accumulation for the first day, and continued more slowly for another day, after which there was no further change. This system has been used to study the effects of axonal crush injury upon anterograde and retrograde axoplasmic transport. A tie applied at various times after injury, proximal to the site of injury, was used to show that orthograde transport of AChE was maintained for 1 day after tying, but at 2 days had fallen 50% or more, and within a week was down to 20–25% of control. At 3 days after injury retrograde transport of AChE activity was not different from the control. Orthograde transport of acid P'tase activity was depressed 35% by injury. Retrograde transport of acid P'tase was inhibited more than 50% both at 3 and at 7 days after injury. Transport of the mitochondrial enzymes was not measurably affected.  相似文献   

9.
Reversal of the direction (turnaround) of orthograde axonal transport of dopamine-beta-hydroxylase (DBH) activity was studied at a ligature placed on rat sciatic nerve. DBH was allowed to accumulate at a ligature in vivo for selected intervals, at which time a second ligature was placed proximal to the first and turnaround transport measured just distal to the second tie after incubation in vivo or in vitro. Orthograde accumulation of DBH activity proximal to a ligature peaked at 2 days, and then rapidly decreased as a result of turnaround transport and injury-induced reduction of orthograde transport. Destruction of postganglionic sympathetic axon terminals in vivo with 6 hydroxydopamine resulted in a decrease in orthograde transport similar to that seen after axotomy and turnaround at or proximal to the site of chemical injury. Turnaround transport of DBH in vitro was blocked by incubation in the cold and in the presence of NaCN and vinblastine. Orthograde transport of DBH appeared to reverse direction within a few millimeters of a ligature.  相似文献   

10.
: Reversal of direction (turnaround) of axonal transport of particle specific enzyme activities was studied at a ligature placed on rat sciatic nerve. In the principal experiment, the ligature remained on the nerve in vivo several hours, allowing enzyme activities (acetylcholinesterase, acid phosphatase, and monoamine oxidase) to accumulate immediately proximal to the tie. The nerve was then tied a second time, proximal to the first tie, and incubated in vitro for several more hours. Accumulation of enzyme activities just distal to the second tie was measured. This second accumulation, of activities traveling in the retrograde direction, was shown to be the result of turnaround in several ways. (1) The increase in activity distal to the second tie was equal to the decrease in activity proximal to the first. (2) The increase in enzyme activities distal to the second tie was greatly reduced when the accumulation proximal to the first tie was trapped by placing a third tie between the first and second ties. (3) It was shown that the activity that accumulated distal to the second tie could not have been in retrograde motion at the time of the first tie. (4) Accumulation distal to the second tie was not a function of the length of nerve segment included between the two ties. In contrast to the consistent occurrence of turnaround of orthograde flow, turnaround of retrograde flow could not be demonstrated. Turnaround transport was blocked by incubation in the cold and in the presence of NaCN or vinblastine. The turnaround process operated on all three enzymes studied, suggesting that it operates on lysosomes and mitochondria, as well as on the endoplasmic reticulum-like material bearing acetylcholinesterase. Evidence for the participation of the transport process in the renewal of AChE in the distal portions of the axon was obtained in experiments using diisopropylphosphorofluoridate and cycloheximide.  相似文献   

11.
The effect of hypoglycaemia (blood glucose 1 mmol/l) on the axonal transport of acetylcholinesterase activity and noradrenaline was examined in non-diabetic rats. Rats were made hypoglycaemic over a 6-h period during which acetylcholinesterase and noradrenaline accumulated proximal to a tight ligature applied to the left sciatic nerve. The hypoglycaemic rats were either kept at room temperature, when they became profoundly hypothermic, or kept in a 31 degrees C incubator to maintain body temperature as close to normal as possible. Hypoglycaemia without temperature control caused marked reductions in the accumulation of acetylcholinesterase activity and of noradrenaline proximal to the ligature. These accumulation deficits were obviated by body heating. The findings indicate that hypoglycaemia impairs fast orthograde axonal transport, but that this effect is a consequence of hypothermia rather than glucopenia.  相似文献   

12.
Axoplasmic transport of dopamine-β-hydroxylase (DBH), a marker enzyme for catecholamine storage vesicles, was studied in sympathetic nerves of the rat. At 24 h after ligation of the sciatic nerve, there was a marked accumulation of DBH activity in the first 3 mm proximal to the ligature. Immediately distal to the ligature, a slight accumulation took place. Accumulation proximal to the ligature was a linear function of time for at least 6 h; the velocity of transport was calculated as 4.6 mm/h. Local application of 1 ·l of 0.1 M colchicine, caused a rapid increase in DBH activity in superior cervical ganglia. This increase remained linear for 22 h and its rate indicated a turnover time of 12 h for DBH in these ganglia. After application of colchicine to the ganglia, there was a decrease in DBH activity in the submaxillary salivary glands. The initial rate of this decrease was less than the rate of increase in the ganglia and probably reflected the normal turnover of the enzyme. Our results indicated that the turnover time for DBH in salivary glands ranged between 3.6 and 6.3 days.  相似文献   

13.
At the present time, complete agreement on the origin and course of parasympathetic preganglionic fibers to the alimentary canal has not been reached. The purpose of this study was to trace vagal fibers to the abdominal cavity and to follow the distribution of these fibers to the digestive tube. The technique used was to label neurons in the dorsal motor nucleus of the vagus (DMX) with 3H-leucine and then to follow the orthograde transport. 16 albino rats were used in this experiment. The right DMX in one group of rats and the left DMX in the other group was injected with 25 microCi of 3H-leucine in three injections. The injection sites and tissue sections from various areas of the digestive tube were processed for autoradiography. A heavy label was observed in the injection site and it could be traced down the vagus nerve through the thorax into the abdomen. Labelled vagal fibers were found in the parasympathetic ganglia of the stomach, small intestine and colon.  相似文献   

14.
Axonal transport of the 16S Molecular form of acetylcholinesterase (16S-AChE) in doubly ligated rat sciatic nerves was studied by means of velocity sedimentation analysis on sucrose gradients. This form of AChE was selectively confined to motor, and not to sensory, fibers in the sciatic nerve, where it represented 3--4% of total AChE. Its activity increased linearly with time (4--20 hr) in nerve segments (7 mm) proximal to the central ligature (4.5 mU/24hr) and distal to the peripheral ligature (2.0 mU/24 hr). From the linear rates of accumulation of 16S-AChE, we conclude that the enzyme is conveyed by anterograde and retrograde axonal transport at velocities close to those previously defined for the movement of total AChE (410 mm/day, anterograde; 220 mm/day, retrograde). The transport of AChE molecular forms, other than the 16S form, could not be resolved presumably due to their presence in blood as well as at extraaxonal sites. The present findings are consistent with the view that in rat sciatic nerve most, if not all, of the small portion of total AChE (approximately 3%) which is transported may be accounted for by 16S-AChE.  相似文献   

15.
Summary In order to examine the possible haematogenous origin of phagocytes in anterograde and retrograde degeneration, rabbit peritoneal macrophages were labeled in vitro with 3H-DFP and injected intravenously into host animals. Four or five days prior to the injection, the facial nerve was avulsed and the sciatic nerve ligated in five recipients. The animals were killed 24 h after the injection of the macrophages. Labeled cells were found in that part of the sciatic nerve which was mechanically damaged and in the liver and spleen but not in areas with retrograde or Wallerian degeneration. The possible interpretation of these findings is discussed.The present experiments were performed by M.O. after suggestions by A.T. These studies were supported by a grant from the Deutsche Forschungsgemeinschaft  相似文献   

16.
—Rabbit vagus nerves and nodose ganglia were incubated in vitro for up to 24 h in two-compartment chambers. After the introduction of [3H]leucine or [3H]fucose to the ganglion compartments a rapid anterograde axonal transport of labelled proteins or glycoproteins occurred at rates of 330 ± 44 mm/day and 336 ± 30 mm/day respectively. Accumulation of [3H]leucine-labelled proteins proximal to a ligature on the nerve was unaffected by a delay of up to 6 h between removal of the nerve and labelling in vitro. Accumulation was prevented by inhibition of protein synthesis in the ganglion but not in the axon and was inhibited in a graded manner by colchicine.  相似文献   

17.
Cholecystokinin (CCK) receptors have been detected in the rat vagus nerve. Ligation experiments have revealed a time dependent build up of the receptors at the ligature which is blocked by colchicine. Thus, at least a fraction of the receptors are being transported peripherally, presumably by fast flow. The possible involvement of these vagal CCK receptors with the ability of CCK to induce satiety is discussed.  相似文献   

18.
The accumulation of [3H]leucine- and [3H]fucose-labelled axonal proteins, acetyl-CoA : choline O-acetyltransferase (ChAc, EC 2.3.1.6) and acetylcholinesterase (AChE, EC 3.1.1.7) was studied proximal to a ligature applied to the hypoglossal nerve of the rabbit at different phases of nerve regeneration. After 1 week of regeneration, the accumulation of rapidly migrating [3H]leucine-labelled proteins, ChAc and AChE was reduced as compared to that of the contralateral nerve. In contrast, the accumulation of [3H]fucose-labelled glycoproteins was markedly increased. After a regeneration period of 4-6 weeks, the accumulation of proteins and glycoproteins in the regenerating nerve was increased whereas the accumulation of ChAc and AChE was almost normal. The results indicate an initial depression of the synthesis and axonal transport of the bulk of rapidly migrating proteins, ChAc and AChE in the chromatolytic hypoglossal neurons whereas the synthesis and transport of rapidly migrating glycoproteins is increased. These initial changes are less pronounced during the subsequent regeneration period.  相似文献   

19.
Inhibition of norepinephrine re-uptake by angiotensin in brain   总被引:1,自引:0,他引:1  
—A method for perfusion of rat brain ventricles accompanied by electrical stimulation of right vagus nerve was used in the study of the re-uptake mechanism of norepinephrine in rat brain. Tritiated norepinephrine was injected into the left lateral brain ventricle. After a 1-hr equilibration period, the brain was perfused, and effluent was collected and assayed for norepinephrine, normetanephrine and acid metabolites by means of column chromatography and liquid scintillation counting. Electrical stimulation of central end of right vagus nerve produced a significant release of norepinephrine and decrease of acid metabolites; this indicates a shift of catecholamines to extracellular sites. Angiotensin (200 ng/min) added to the perfusion fluid potentiated the effect of nerve stimulation. Cocaine, desmethylimipramine and phenoxybenzamine greatly reduced the release of norepinephrine from brain tissue. None on these drugs potentiated the effect of angiotensin. It is concluded that angiotensin prevents re-uptake of norepinephrine released by nerve stimulation. As a naturally occurring, physiologically active peptide, angiotensin seems to be highly specific in modulation of adrenergie neurotransmission, allowing increased extraneuronal accumulation of neurotransmitter.  相似文献   

20.
Abstract: Axonal transport of phospholipids in normal and regenerating sciatic nerve of the rat was studied. At various intervals after axotomy of the right sciatic nerve in the midthigh region and subsequent perineurial sutures of the transected fascicles, a mixture of 60 μCi [Me-HC]choline and 15 μCi [2-3H]glycerol in the region of the spinal motor neurons of the L5 and L6 segments was injected bilaterally. The amount of radioactive lipid (and in certain cases its distribution in various lipid classes) along the nerve was determined as a function of time. Three days after fascicular suture and 6 h after spinal cord injection of precursors, there was an accumulation of labeled phospholipids and sphingolipids in the transected sciatic nerve in the region immediately proximal to the site of suture. Nine days after, there was a marked increase in the accumulation of radioactivity in the distal segments of the injured nerve, which increased up to 14 days after cutting and disappeared as regeneration proceeded (21–45 days). In all segments of both normal and regenerating nerve fibers, as well as in L5 and L6 spinal cord segments, only phosphatidylcholine and sphingomyelin were labeled with [14C]choline. These results suggest that the regeneration process in a distal segment of a peripheral neuron, following cutting and fascicular repairing by surgical sutures, is sustained in the first 3 weeks by changes in the amount of phospholipids rapidly transported along the axon towards the site of nerve fiber outgrowth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号