首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Potassium channels conduct K+ flow selectively across the membrane through a central pore. During a process called gating, the potassium channels undergo a conformational change that opens or closes the ion-conducting pore. The potassium channel KcsA has been structurally determined in its closed state. However, the dynamic mechanism of the gating transition of the KcsA channel is still being investigated. Here, a targeted molecular dynamics simulation up to 150 ns is performed to investigate the detailed opening process of the KcsA channel with an open Kv1.2 structure serving as the target. The channel arrived at a self-determined quasi-stable state within 60 ns. The rigid-body and hinge-bending modes are observed mixed together in the remaining 90 ns long quasi-stable state. The mixed-mode movement seems come from the competition between the helix rigidity and the biased-applied gating force.  相似文献   

2.
Burykin A  Schutz CN  Villá J  Warshel A 《Proteins》2002,47(3):265-280
Realistic studies of ion current in biologic channels present a major challenge for computer simulation approaches. All-atom molecular dynamics simulations involve serious time limitations that prevent their use in direct evaluation of ion current in channels with significant barriers. The alternative use of Brownian dynamics (BD) simulations can provide the current for simplified macroscopic models. However, the time needed for accurate calculations of electrostatic energies can make BD simulations of ion current expensive. The present work develops an approach that overcomes some of the above challenges and allows one to simulate ion currents in models of biologic channels. Our method provides a fast and reliable estimate of the energetics of the system by combining semimacroscopic calculations of the self-energy of each ion and an implicit treatment of the interactions between the ions, as well as the interactions between the ions and the protein-ionizable groups. This treatment involves the use of the semimacroscopic version of the protein dipole Langevin dipole (PDLD/S) model in its linear response approximation (LRA) implementation, which reduces the uncertainties about the value of the protein "dielectric constant." The resulting free energy surface is used to generate the forces for on-the-fly BD simulations of the corresponding ion currents. Our model is examined in a preliminary simulation of the ion current in the KcsA potassium channel. The complete free energy profile for a single ion transport reflects reasonable energetics and captures the effect of the protein-ionized groups. This calculated profile indicates that we are dealing with the channel in its closed state. Reducing the barrier at the gate region allows us to simulate the ion current in a reasonable computational time. Several limiting cases are examined, including those that reproduce the observed current, and the nature of the productive trajectories is considered. The ability to simulate the current in realistic models of ion channels should provide a powerful tool for studies of the biologic function of such systems, including the analysis of the effect of mutations, pH, and electric potentials.  相似文献   

3.
Blockade of the KcsA potassium channel by externally applied tetraethylammonium is investigated using molecular dynamics calculations and Brownian dynamics simulations. In KcsA, the aromatic rings of four tyrosine residues located just external to the selectivity filter create an attractive energy well or a binding cage for a tetraethylammonium molecule. We first investigate the effects of re-orienting the four tyrosine residues such that the centers of the aromatic rings face the tetraethylammonium molecule directly. Then, we systematically move the residues inward in both orientations so that the radius of the binding cage formed by them becomes smaller. For each configuration, we construct a one-dimensional free energy profile by bringing in a tetraethylammonium molecule from the external reservoir toward the selectivity filter. The free energy profile is then converted to a one-dimensional potential energy profile, taking the available space between the tyrosine residues and the tetraethylammonium molecule into account. Incorporating this potential energy profile into the Brownian dynamics algorithm, we determine the conductance properties of the channel under various conditions, construct the current-tetraethylammonium-concentration curve and compare it with the experimentally determined inhibitory constant ki for externally applied tetraethylammonium. We show that the experimentally determined binding affinity for externally applied tetraethylammonium can be replicated when each of the four tyrosine residues is moved inward by about 0.7 Å, irrespective of orientation of their aromatic rings.  相似文献   

4.
The similarity in structure of potassium (K(+)) channels from different families has been revealed by only recently available crystallographic 3D structural data. The hydropathic analysis presented in this work illuminates whether homologous residues perform the same functions in channels that use different gating mechanisms. We calculated and compared the hydropathic profiles of two K(+) channels, KcsA and Kv1.2 (the latter a member of the Shaker family), at their pore-forming domain. Quantitative information describing important interactions stabilizing the protein beyond obvious secondary-structure elements was extracted from the analysis and applied as a template for subsequent molecular-dynamics (MD) analyses. For example, two key groups of interactions, defining the turns that connect the transmembrane helices and responsible for the orientation of the pore helix, were identified. Our results also indicate that Asp(80) and Asp(379) play a similar role in stabilizing the P-loop of KcsA and Kv1.2, respectively, but to significantly different extents.  相似文献   

5.
6.
The dynamics of potassium ions in a KcsA channel, located within a stochastically fluctuating medium, is modelled via the application of the molecular dynamics simulation method. We investigate the effect of presence and absence of an applied electric field, either constant or periodic, on the dynamics of the channel. It is found that the ions undergo a hopping motion when the channel is exposed to a constant electric field of strength 0.03 V/nm. Furthermore, an alternating electric field in the GHz range, normally present in the daily environment and encountered by most biological systems, is applied to the channel, showing that in this frequency range, the rigidity of the atomic bonds of the filter is increased, which in turn disturbs the ionic passage rate through the filter. Consequently, in this frequency range, the application of electric fields may affect the function of such channels.  相似文献   

7.
The migration of different alkali metal cations through a transmembrane model channel is simulated by means of the molecular dynamics technique. The parameters of the model are chosen in close relation to the gramicidin A channel. Coulomb- and van der Waals-type potentials between the ions and flexible carbonyl groups of the pore-forming molecule are used to describe the ion channel interaction. The diffusion properties of the ions are obtained from three-dimensional trajectory calculations. The diffusion rates for the different ions Li+, Na+, K+ and Rb+ are affected not only by the mass of the particles but also very strongly by their size. The latter effect is more pronounced for rigid channels, i.e., for binding vibrational frequencies of the CO groups with v greater than 400 cm-1. In this range the selectivity sequence for the diffusion rates is the inverse of that expected from normal rate theory but agrees with that found in experiments for gramicidin A.  相似文献   

8.
The recent crystal structures of the voltage-gated potassium channel KvAP and its isolated voltage-sensing 'paddle' (composed of segments S1-S4) challenge existing models of voltage gating and raise a number of questions about the structure of the physiologically relevant state. We investigate a possible gating mechanism based on the crystal structures in a 10 ns steered molecular dynamics simulation of KvAP in a membrane-mimetic octane layer. The structure of the full KvAP protein has been modified by restraining the S2-S4 domain to the conformation of the isolated high-resolution paddle structure. After an initial relaxation, the paddle tips are pulled through the membrane from the intracellular to the extracellular side, corresponding to a putative change from closed to open. We describe the effect of this large-scale motion on the central pore domain, which remains largely unchanged, on the protein hydrogen-bonding network and on solvent. We analyze the motion of the S3b-S4 portion of the protein and propose a possible coupling mechanism between the paddle motion and the opening of the channel. Interactions between the arginine residues in S4, solvent and chloride ions are likely to play a role in the gating charge.  相似文献   

9.
We report the analysis of a 250 ps molecular dynamics simulation of the dodecamer d(CGCAAATTT-GCG)2 immersed in a rectangular box of 3469 water molecules with 22 Na+ counterions. The internal dynamics of the molecule were investigated by studying the relevant autocorrelation functions related to the 13C-NMR relaxation parameters of the C1′-H1′ bonds of the sugar rings. The calculated effective correlation times τ e (∼13 ps) and the order parameter S2 (∼0.82) of the Lipari and Szabo formalism (Lipari and Szabo 1982a, b) are in satisfactory agreement with those determined previously by NMR (Gaudin et al. 1995, 1996). 1H-1H NOE buildups have also been measured experimentally and agree with those computed from the simulation. These results validate the simulation, and a more detailed analysis of the internal dynamics of the dodecamer was undertaken. Analysis of the distributions and of the autocorrelation functions of the glycosidic angle flucuations χ shows that the rotational motion of the sugar rings about their glycosidic bond conforms to a restricted diffusion mechanism. The amplitude of the motions and the diffusion constant are 20° and 17.109 rad2s–1 respectively. These values are in good agreement with 13C NMR data. Furthermore the simulation allows us to rule out another model also consistent with the experiment, consisting of a two-state jump between a syn and an anti conformation. Received: 19 November 1996 / Accepted: 17 March 1997  相似文献   

10.
Glycoproteins are formed as the result of enzymatic glycosylation or chemical glycation in the body, and produced in vitro in industrial processes. The covalently attached carbohydrate molecule(s) confer new properties to the protein, including modified stability. In the present study, the structural stability of a glycoprotein form of myoglobin, bearing a glucose unit in the N-terminus, has been compared with its native form by the use of molecular dynamics simulation. Both structures were subjected to temperatures of 300 and 500 K in an aqueous environment for 10 ns. Changes in secondary structures and RMSD were then assessed. An overall higher stability was detected for glycomyoglobin, for which the most stable segments/residues were highlighted and compared with the native form. The simple addition of a covalently bound glucose is suggested to exert its stabilizing effect via increased contacts with surrounding water molecules, as well as a different pattern of interactions with neighbor residues.

Electronic supplementary material

The online version of this article (doi:10.1007/s10867-015-9383-2) contains supplementary material, which is available to authorized users.  相似文献   

11.
Interaction of the calcium-channel antagonist dihydropyridines (DHPs), lacidipine and nifedipine, with a phospholipid bilayer was studied using 600 ps molecular dynamic simulations. We have constructed a double layer membrane model composed of 42 dimirystoyl-phosphatidylcholine molecules. The DHP molecules locate at about 7 Å from the centre of the membrane, inducing an asymmetry in the bilayer. While lacidipine did not induce significant local perturbations as judged by the gauche-trans isomerisation rate, nifedipine significantly decreased this rate, probably by producing a local rigidity of the membrane in the vicinity of the DHP.  相似文献   

12.
GluR0 is a prokaryotic homologue of mammalian glutamate receptors that forms glutamate-activated, potassium-selective ion channels. The topology of its transmembrane (TM) domain is similar to that of simple potassium channels such as KcsA. Two plausible alignments of the sequence of the TM domain of GluR0 with KcsA are possible, differing in the region of the P helix. We have constructed homology models based on both alignments and evaluated them using 6 ns duration molecular dynamics simulations in a membrane-mimetic environment. One model, in which an insertion in GluR0 relative to KcsA is located in the loop between the M1 and P helices, is preferred on the basis of lower structural drift and maintenance of the P helix conformation during simulation. This model also exhibits inter-subunit salt bridges that help to stabilise the TM domain tetramer. During the simulation, concerted K(+) ion-water movement along the selectivity filter is observed, as is the case in simulations of KcsA. K(+) ion exit from the central cavity is associated with opening of the hydrophobic gate formed by the C-termini of the M2 helices. In the intact receptor the opening of this gate will be controlled by interactions with the extramembranous ligand-binding domains.  相似文献   

13.
Conjugated linoleic acids (CLA) are found naturally in dairy products. Two isomers of CLA, that differ only in the location of cis and trans double bonds, are found to have distinct and different biological effects. The cis 9 trans 11 (C9T11) isomer is attributed to have the anti-carcinogenic effects, while the trans 10 cis 12 (T10C12) isomer is believed to be responsible for the anti-obesity effects. Since dietary CLA are incorporated into membrane phospholipids, we have used Molecular Dynamics (MD) simulations to investigate the comparative effects of the two isomers on lipid bilayer structure. Specifically, simulations of phosphatidylcholine lipid bilayers in which the sn-2 chains contained one of the two isomers of CLA were performed. Force field parameters for the torsional potential of double bonds were obtained from ab initio calculations. From the MD trajectories we calculated and compared structural properties of the two lipid bilayers, including areas per molecule, density profiles, thickness of bilayers, tilt angle of tail chains, order parameters profiles, radial distribution function (RDF) and lateral pressure profiles. The main differences found between bilayers of the two CLA isomers, are (1) the order parameter profile for C9T11 has a dip in the middle of sn-2 chain while the profile for T10C12 has a deeper dip close to terminal of sn-2 chain, and (2) the lateral pressure profiles show differences between the two isomers. Our simulation results reveal localized physical structural differences between bilayers of the two CLA isomers that may contribute to different biological effects through differential interactions with membrane proteins or cholesterol.  相似文献   

14.
The lack of a membrane environment in membrane protein crystals is considered one of the major limiting factors to fully imply X-ray structural data to explain functional properties of ion channels [Gulbis, J.M. and Doyle, D. (2004) Curr. Opin. Struct. Biol. 14, 440-446]. Here, we provide infrared spectroscopic evidence that the structure and stability of the potassium channel KcsA and its chymotryptic derivative 1-125 KcsA reconstituted into native-like membranes differ from those exhibited by these proteins in detergent solution, the latter taken as an approximation of the mixed detergent-protein crystal conditions.  相似文献   

15.
Fragrance rice (Oryza sativa) contains two isoforms of BADH, named OsBADH1 and OsBADH2. OsBADH1 is implicated in acetaldehyde oxidation in rice plant peroxisomes, while the non-functional OsBADH2 is believed to be involved in the accumulation of 2-acetyl-1-pyrroline, the major compound of aroma in fragrance rice. In the present study, site-directed mutagenesis, molecular docking and molecular dynamics simulation studies were used to investigate the substrate specificity towards Bet-ald and GAB-ald. Consistent with our previous study, kinetics data indicated that the enzymes catalyze the oxidation of GAB-ald more efficiently than Bet-ald and the OsBADH1 W172F and OsBADH2 W170F mutants displayed a higher catalytic efficiency towards GAB-ald. Molecular docking analysis and molecular dynamics simulations for the first time provided models for aldehyde substrate-bound complexes of OsBADHs. The amino acid residues, E262, L263, C296 and W461 of OsBADH1 and E260, L261, C294 and W459 of OsBADH2 located within 5 Å of the OsBADH active site mainly interacted with GAB-ald forming strong hydrogen bonds in both OsBADH isoforms. Residues W163, N164, Q294, C296 and F397 of OsBADH1–Bet-ald and Y163, M167, W170, E260, S295 and C453 of OsBADH2–Bet-ald formed the main interaction sites while E260 showed an interaction energy of −14.21 kcal/mol. Unconserved A290 in OsBADH1 and W288 in OsBADH2 appeared to be important for substrate recognition similar to that observed in PsAMADHs. Overall, the results here help to explain how two homologous rice BADHs recognize the aldehyde substrate differently, a key property to their biological role.  相似文献   

16.
Liqun Zhang 《Proteins》2017,85(4):665-681
Human defensins are a class of antimicrobial peptides that are crucial components of the innate immune system. Both human α defensin type 5 (HD5) and human β defensin type 3 (hBD‐3) have 6 cysteine residues which form 3 pairs of disulfide bonds in oxidizing condition. Disulfide bond linking is important to the protein structure stabilization, and the disulfide bond linking and breaking order have been shown to influence protein function. In this project, microsecond long molecular dynamics simulations were performed to study the structure and dynamics of HD5 and hBD‐3 wildtype and analogs which have all 3 disulfide bonds released in reducing condition. The structure of hBD‐3 was found to be more dynamic and flexible than HD5, based on RMSD, RMSF, and radius of gyration calculations. The disulfide bridge breaking order of HD5 and hBD‐3 in reducing condition was predicted by two kinds of methods, which gave consistent results. It was found that the disulfide bonds breaking pathways for HD5 and hBD‐3 are very different. The breaking of disulfide bonds can influence the dimer interface by making the dimer structure less stable for both kinds of defensin. In order to understand the difference in dynamics and disulfide bond breaking pathway, hydrophilic and hydrophobic accessible surface areas (ASA), buried surface area between cysteine pairs, entropy of cysteine pairs, and internal energy were calculated. Comparing to the wildtype, hBD‐3 analog is more hydrophobic, while HD5 is more hydrophilic. For hBD‐3, the disulfide breaking is mainly entropy driven, while other factors such as the solvation effects may take the major role in controlling HD5 disulfide breaking pathway. Proteins 2017; 85:665–681. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
The localisation and dynamics of sodium counterions around the DNA duplex d(AGCGTACTAGTACGCT)2 corresponding to the trp operator fragment used in the crystal structure of the half site complex has been studied by a 1.4 ns molecular dynamics simulation in explicit solvent. A continuous and well-defined counterion density is shown to be present around the minor groove, while density patches are found in the major groove in regions where DNA bending is observed. A residence time analysis reveals the dynamic nature of these distributions. The resulting picture agrees with previous theoretical and experimental studies of A-tract DNA sequences, and is consistent with the polyelectrolyte condensation model. Received: 12 August 1999 / Revised version: 11 November 1999 / Accepted: 7 December 1999  相似文献   

18.
A molecular dynamics (MD) simulation of the fully hydrated bilayer made of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and containing beta-carotene (beta-Car) molecules was carried out as a complementary approach to experimental techniques to investigate the orientation of beta-Car in the lipid membrane as well as its influence on the bilayer properties. The bilayer reached thermal equilibrium after 1200 ps of MD simulation and the productive run was carried out for 2800 ps. The results indicate that the carotene rings are located in the region occupied by the carbonyl groups of the POPC gamma-chain with no trace of penetration towards the centre of the bilayer. Carotene exhibits an ordering effect on both the beta- and the gamma-chain. While the fully saturated gamma-chain is affected evenly along, the order of the mono-unsaturated beta-chain is modified mainly below the double bond. In general, a high value of the order parameter and the chain tilt in the range from 11.4 degrees to 26.7 degrees were observed for the beta-Car molecules. However, for chain segment adjacent to methyl groups the value of the order parameter is low and the tilt angle is close to 75 degrees . Moreover, the probability of trans conformation being generally close to 1.0 along the beta-Car chain is reduced for these segments. Our MD simulation study suggests two pools of the preferential orientation of beta-Car: a slightly bent structure corresponding to a small chain tilt angle and a rather stretched structure that corresponds to a higher chain tilt. The results are discussed in the light of experimental findings.  相似文献   

19.
Although lipid force fields (FFs) used in molecular dynamics (MD) simulations have proved to be accurate, there has not been a systematic study on their accuracy over a range of temperatures. Motivated by the X-ray and neutron scattering measurements of common phosphatidylcholine (PC) bilayers (Ku?erka et al. BBA. 1808: 2761, 2011), the CHARMM36 (C36) FF accuracy is tested in this work with MD simulations of six common PC lipid bilayers over a wide range of temperatures. The calculated scattering form factors and deuterium order parameters from the C36 MD simulations agree well with the X-ray, neutron, and NMR experimental data. There is excellent agreement between MD simulations and experimental estimates for the surface area per lipid, bilayer thickness (DB), hydrophobic thickness (DC), and lipid volume (VL). The only minor discrepancy between simulation and experiment is a measure of (DB − DHH) / 2 where DHH is the distance between the maxima in the electron density profile along the bilayer normal. Additional MD simulations with pure water and heptane over a range of temperatures provide explanations of possible reasons causing the minor deviation. Overall, the C36 FF is accurate for use with liquid crystalline PC bilayers of varying chain types and over biologically relevant temperatures.  相似文献   

20.
Experimental evidence of the existence of multi-wall platinum (Pt) nanowires (NWs) has been reported. In this paper, we investigated structural formation of Pt NWs using the classical molecular dynamics (MD) simulation method. The simulations began from initial configurations with random distributions of atomic positions. The initial configuration was minimised by the steepest descent method, and assigned a temperature of 601?K with a random distribution of atomic velocities. Then simulated annealing was applied such that the temperature of the system was reduced gradually to 1?K and a stable NW structure was obtained. Types of hexagonal solid Pt NWs featuring different structures than those of previously reported NWs were found. Details of structural characteristics and mechanical properties of these Pt NWs are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号