共查询到15条相似文献,搜索用时 46 毫秒
1.
GYJ3菌株细胞微细结构的电镜观察结果表明:它具有Ⅱ型甲烷利用细菌的特征,应归属于Ⅱ型菌。考察了Cu2+浓度、培养气相中甲烷浓度对菌株细胞中甲烷单加氧酶(EC1.14.13.25,简称MMO)活性的影响。结果表明,培养液中Cu2+浓度为1.5μmol/L,培养气相中甲烷:空气比为2∶1时,可溶性甲烷单加氧酶占细胞中MMO总量的95%。研究了GYJ3菌株细胞悬浮液降解三氯乙烯过程。实验结果表明,GYJ3菌株能够降解不同浓度的三氯乙烯,较高浓度的三氯乙烯对降解反应没有明最的抑制作用。加入甲酸盐作为电子给体能够提高三氯乙烯降解反应速率。实验中观察到GYJ3菌株降解三氯乙烯过程中反应速率随着反应的进行而下降,在三氯乙烯降解过程中三氯乙烯氧化产物是导致细胞失活的主要原因。实验室中测定了GYJ3菌株单位重量细胞降解三氯乙烯极限量,它可作为评价细菌降解三氯乙烯能力的重要指标。 相似文献
2.
以聚乙烯醇为唯一碳源从环境中筛选获得了高效降解聚乙烯醇的微生物菌株XT11,初步鉴定为假单胞菌属(Pseudomonas sp.).对菌株Pseudomonas XT11的生长过程及PVA降解过程进行了研究,发现该菌株在54 h内可将1 g/L的聚乙烯醇(PVA)降解.同时研究了温度、pH值及酵母膏浓度对该菌株降解PVA的影响,结果表明其最适温度、pH值和酵母膏浓度分别为30℃、7.0和0.5 g/L.研究了PVA浓度对PVA降解率的影响,发现随着PVA浓度的增大,PVA的降解率降低. 相似文献
3.
4.
从DDT污染的土壤中筛选具有DDT降解能力的细菌,经过富集培养、分离纯化得到56株细菌,将其接种到基础盐酵母培养基,7d后用紫外分光光度计法初筛得到降解率较高的一株菌,编号为D-1.通过16S rDNA序列分析结合传统分类学方法确定该菌为寡养单胞菌属(Stenotrophomonas sp.)的一株茵.对菌体降解DDT的特性的研究表明,在培养温度为3℃,底物质量浓度为40 mg/L, pH 7.0,摇床转速为200 r/min的条件下,该菌株对DDT降解10d的降解率为69.0%. 相似文献
5.
本文针对一株纤维化纤维微细菌Cellulosimicrobium cellulans Ha8菌株开展了生物学特性和苯环类物质代谢能力研究.该菌株革兰氏阳性,长杆状,培养后期逐渐变为短杆状;能固氮,水解蛋白质,液化明胶,利用淀粉、纤维素和果胶,分解几丁质;在pH 6.0~9.0和20℃~40℃范围内生长较好;能利用苯甲酸、苯酚、二甲苯、苯丙烯酸和二苯胺为唯一碳源进行生长,对这几种苯环类物质浓度的耐受范围分别为0 mmol/L~30 mmol/L、0 mmol/L~8 mmol/L、0 mmol/L~30 mmol/L、0 mmol/L~15 mmol/L和0 mmol/L~40 mmol/L,但不能利用2,4-二硝基苯酚、邻硝基酚、邻甲氧基酚、氨基苯磺酸、邻苯二酚和邻菲罗啉为唯一碳源生长. 相似文献
6.
7.
8.
9.
Phenol degradation efficiency of cold-tolerant Arthrobacter sp. AG31 and mesophilic Pseudomonas putida DSM6414 was compared. The cold-tolerant strain was cultivated at 10°C, while the mesophile was grown at 25°C. Both strains degraded 200 mg and 400 mg phenol/l within 48–72 h of cultivation, but the cold-tolerant strain produced more biomass than the mesophile. Both strains oxidized catechol by the ortho type of ring fission. Catechol 1,2 dioxygenase (C1,2D) activity was found intra- and extracellularly in the absence and in the presence of phenol. In the presence of 200 mg phenol/l, C1,2D activity of the mesophile was about 1.5- to 2-fold higher than that of the cold-tolerant strain. However, an initial phenol concentration of 400 mg/l resulted in a comparable enzyme activity of the cold-tolerant and the mesophilic strain. The two strains differed significantly in their toxicity pattern towards 12 aromatic (mostly phenolic) compounds at different growth temperatures, which was determined via growth inhibition in the presence of nutrients and toxicants. For the cold-tolerant strain, toxicity was significantly lower at 10°C than at 25°C. The mesophile showed a significantly lower susceptibility to high hydrocarbon concentrations when grown at 25°C compared to 10°C.Communicated by K. Horikoshi 相似文献
10.
Biodegradation of phenol and 4-chlorophenol by the yeast <Emphasis Type="Italic">Candida tropicalis</Emphasis> 总被引:2,自引:0,他引:2
Biodegradation of phenol and 4-chlorophenol (4-cp) using a pure culture of Candida tropicalis was studied. The results showed that C. tropicalis could degrade 2,000 mg l−1 phenol alone and 350 mg l−1 4-cp alone within 66 and 55 h, respectively. The capacity of the strain to degrade phenol was obviously higher than that
to degrade 4-cp. In the dual-substrate system, 4-cp intensely inhibited phenol biodegradation. Phenol beyond 800 mg l−1 could not be degraded in the presence of 350 mg l−1 4-cp. Comparatively, low-concentration phenol from 100 to 600 mg l−1 supplied a sole carbon and energy source for C. tropicalis in the initial phase of biodegradation and accelerated the assimilation of 4-cp, which resulted in the fact that 4-cp biodegradation
velocity was higher than that without phenol. And the capacity of C. tropicalis to degrade 4-cp was increased up to 420 mg l−1 with the presence of 100–160 mg l−1 phenol. In addition, the intrinsic kinetics of cell growth and substrate degradation were investigated with phenol and 4-cp
as single and mixed substrates in batch cultures. The results illustrated that the models proposed adequately described the
dynamic behaviors of biodegradation by C. tropicalis. 相似文献
11.
Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products 总被引:5,自引:0,他引:5
More than 90% of the antibiotics ciprofloxacin (CIPRO) and norfloxacin (NOR) at 2 mg L−1 were degraded by Trametes versicolor after 7 days of incubation in malt extract liquid medium. In in vitro assays with purified laccase (16.7 nkat mL−1), an extracellular enzyme excreted constitutively by this fungus, 16% of CIPRO was removed after 20 h. The addition of the laccase mediator 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt led to 97.7% and 33.7% degradation of CIPRO and NOR, respectively. Inhibition of CIPRO and NOR degradation by the cytochrome P450 inhibitor 1-aminobenzotriazole suggests that the P450 system also plays a role in the degradation of the two antibiotics. Transformation products of CIPRO and NOR were monitored at different incubation times by triple-quadrupole and quadrupole time-of-flight mass spectrometry, and can be assigned to three different reaction pathways: (i) oxidation of the piperazinyl substituent, (ii) monohydroxylation, and (iii) formation of dimeric products. 相似文献
12.
One-step conversion of aniline, phenol and some of their monochlorinated derivatives into the corresponding catechols by resting pre-adapted cells of the Rhodococcus mutant strain AM 144 (defective in synthesis of catechol 1,2-dioxygenase) was shown to depend on the availability of an additional metabolizable carbon substrate, e.g. glucose or acetate. A stoichiometric relation existed between the amount of the latter compounds added and the amount of aniline (or phenol, respectively) converted into catechol suggesting that the primary function of the cosubstrates was to provide reducing power to the oxygenative transformation reaction. The observed cosubstrate-dependence generally parallels that seen in previous studies on turnover of different monochloroaromatic non-growth substrates by aromatics-utilizing Rhodococcus wildtype-strains. Cell cultures of strain AM 144 growing at the expense of acetate also proved able to convert aniline into catechol. Typically, growth of the cells was retarded during the phase of aniline transformation as compared to the respective control cultures. Based on the results of these model experiments, it was concluded that (i) in natural microbial communities cometabolically active bacteria would hardly enrich under cometabolic conditions over fast-growing non-cometabolizing bacteria if the latter organisms will tolerate the particular non-growth substrate, and (ii) cometabolizing bacteria would have a selective advantage only if the non-growth substrate to be transformed is a toxic one or if it can serve as a potential nutrient source (e.g., of nitrogen or sulfur).Abbreviations MCA monochloroaniline - MCP monochlorophenol - MCC monochlorocatechol - TLC thin-layer chromatography - MS mass spectrometry - GLC gas-liquid chromatography - UV ultraviolet (range of the spectrum) 相似文献
13.
14.
In order to better understand which enzyme are of importance in lignin degradation, new cellulase deficient strains from Sporotrichum pulverulentum have been isolated by spontaneous and induced mutations from both wild type and from the earlier studied cellulase deficient strain 44. These new strains are xylanase positive (Xyl+), and produce considerably higher amounts of phenol oxidases (Pox) than either parent type. The new strains have been compared with the wild type and strain 44 with respect to their ability to release 14CO2 from a) vanillic acid labelled in the carboxyl, methoxyl and ring carbons; b) the dimer (4-methoxy-14C)-veratryl-glycerol--guaiacyl ether; c) 14C-ring-labelled DHP and 14C[-carbon side chain] labelled DHP.The new strains, the wild type and strain 44 were compared with respect to their ability to cause weight losses in wood blocks and to delignify wood. One of the new strains, 63-2, caused a higher weight loss in wood than either the wild type or strain 44. Another strain, 44-2, produced a higher weight loss than strain 44. An increase in acid-soluble lignin was observed in wood blocks treated for two weeks with the two new mutant strains and wild type. After prolonged incubation for 6 and 8 weeks the amount of acid-soluble lignin decreased.Abbreviations DHP
Dehydrogenation polymerizate
- DMS
2,2-dimethylsuccinic acid 相似文献
15.
Jin-Gu Lee Woong Kim Steven Gygi Yihong Ye 《The Journal of biological chemistry》2014,289(6):3510-3517
Deubiquitinating enzymes (DUBs) regulate various cellular processes ranging from protein degradation to cellular signaling. USP19, the only DUB containing a carboxyl-terminal transmembrane domain, was proposed to function in endoplasmic reticulum-associated degradation (ERAD). Here we characterize the function and regulation of USP19. We identify Hsp90 as a specific partner that binds the catalytic domain of USP19 to promote substrate association. Intriguingly, although overexpressed USP19 interacts with Derlin-1 and other ERAD machinery factors in the membrane, endogenous USP19 is mostly in the cytosol where it binds Hsp90. Accordingly, we detect neither interaction of endogenous USP19 with Derlin-1 nor significant effect on ERAD by USP19 depletion. The USP19 transmembrane domain appears to be partially stabilized in the cytosol by an interaction with its own catalytic domain, resulting in auto-inhibition of its deubiquitinating activity. These results clarify the role of USP19 in ERAD and suggest a novel DUB regulation that involves chaperone association and membrane integration. Moreover, our study indicates that the localization of tail-anchored membrane proteins can be subject to regulation in cells. 相似文献