首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rat liver plasma membranes contain transglutaminase activity and a large molecular weight protein aggregate that serves as a substrate for this enzyme (Slife, C.W., Dorsett, M.D., Bouquett, G.T., Register, A., Taylor, E., and Conroy, S. (1985) Arch. Biochem. Biophys. 241, 329-336; Slife, C.W., Dorsett, M.D., and Tillotson, M.L. (1986) J. Biol. Chem. 261, 3451-3456). When purified plasma membranes were sonicated and the different plasma membrane domains were separated by sedimentation through a linear sucrose gradient, virtually all of the transglutaminase activity and the large molecular weight transglutaminase substrate were associated with membrane fragments which migrated to a very dense region of the gradient (1.18 g/cm3). The bile canalicular markers, 5'-nucleotidase and HA-4 antigen, were predominantly found at 1.11 g/cm3, while most of the sinusoidal/lateral marker, CE-9 antigen, was detected at 1.14 g/cm3. Smooth membrane vesicles were observed chiefly at the lighter densities upon morphological analysis, while many filament-bearing, plasma membrane segments and junctional complexes were contained in the heavy transglutaminase fractions. These data show that the plasma membrane transglutaminase and the large molecular weight transglutaminase substrate are associated with a distinct region of the plasma membrane.  相似文献   

2.
Rat liver plasma membranes contain transglutaminase activity and a large molecular weight protein complex which serves as a substrate for this enzyme. When plasma membranes were solubilized in sodium dodecyl sulfate and disulfide-reducing agents the transglutaminase substrate was recovered in the detergent-insoluble fraction. The insolubility of the complex suggested that it might be further studied by adsorbing membranes onto glass slides, then extracting with the detergent and reducing agent. After extraction, dark field light microscopy revealed numerous flattened sheets which varied in size from 4 to 12 micrometers. To confirm that these structures were the large molecular weight transglutaminase substrate, the plasma membranes were solubilized in sodium dodecyl sulfate and dithiothreitol and sedimented through a sucrose gradient containing the agent. The large molecular weight substrate was the only material found at the 1.11/1.23 g/cm3 interface. Microscopic examination showed the same structures previously observed on the glass slides. We conclude that the large molecular weight transglutaminase substrate is a sodium dodecyl sulfate-insoluble, morphologically distinct, protein complex. Due to its considerable size, nondissociable nature, and association with the lateral membrane, the sodium dodecyl sulfate-insoluble transglutaminase substrate may serve as a type of skeleton or scaffolding for this plasma membrane domain.  相似文献   

3.
Fractionation of rat liver by homogenization and differential centrifugation revealed that only about 83% of the transglutaminase activity in the tissue is in a soluble form, and that the remainder is associated with the particulate fraction. This latter activity remained with the membranes even after they were extensively washed to remove 99% of such soluble enzymes as lactate dehydrogenase and aldolase. Subsequent fractionation of the membranes by isopycnic density gradient centrifugation in sucrose resulted in a single band of transglutaminase activity at a density of 1.194 g/cm3. This activity was coincident with the major band of plasma membranes, which was identified by its content of 5'-nucleotidase, alkaline phosphodiesterase I, alkaline phosphatase and leucine aminopeptidase activities. After treatment with digitonin and fractionation on sucrose gradients, the transglutaminase activity and the plasma membrane marker enzyme activities were found at a new density of 1.210 g/cm3, while the enzyme markers for the other membrane fractions remained unchanged. From these data, we conclude that approximately 17% of the transglutaminase activity in rat liver is specifically associated with the plasma membranes.  相似文献   

4.
Subcellular localization of transglutaminase. Effect of collagen.   总被引:7,自引:1,他引:6       下载免费PDF全文
1. The subcellular distribution of transglutaminase was investigated by using the analytical approach of differential and isopycnic centrifugation as applied to three organs of the rat: liver, kidney and lung. After differential centrifugation by the method of de Duve, Pressman, Gianetto, Wattiaux & Appelmans [(1955) Biochem. J. 63, 604-617], transglutaminase is mostly recovered in the unsedimentable fraction S and the nuclear fraction N. After isopycnic centrifugation of the N fraction in a sucrose density gradient, a high proportion of the enzyme remains at the top of the gradient; a second but minor peak of activity is present in high-density regions, where a small proportion of 5'-nucleotidase, a plasma-membrane marker, is present together with a large proportion of collagen recovered in that fraction. 2. Fractions where a peak of transglutaminase was apparent in the sucrose gradient were examined by electron microscopy. The main components are large membrane sheets with extracellular matrix and free collagen fibers. 3. As these results seem to indicate that some correlation exists between particulate transglutaminase distribution and those of collagen and plasma membranes, the possible binding of transglutaminase by collagen (type I) and by purified rat liver plasma membrane was investigated. 4. The binding studies indicated that collagen is able to bind transglutaminase and to make complexes with plasma-membrane fragments whose density is higher than that of plasma-membrane fragments alone. Transglutaminase cannot be removed from such complexes by 1% Triton X-100, but can be to a relatively large extent by 0.5 M-KCl and by 50% (w/v) glycerol. 5. Such results suggest that the apparent association of transglutaminase with plasma membrane originates from binding in vitro of the cytosolic enzyme to plasma membrane bound to collagen, which takes place during homogenization of the tissue, when the soluble enzyme and extracellular components are brought together.  相似文献   

5.
The orientation of mannosidase II, an integral Golgi membrane protein involved in asparagine-linked oligosaccharide processing, has been examined in rat liver Golgi membranes. Previous studies on mannosidase II purified from Golgi membranes revealed an intact subunit of 124,000 daltons, as well as a catalytically active 110,000-dalton degradation product generated during purification (Moremen, K. W., and Touster, O. (1985) J. Biol. Chem. 260, 6654-6662). In Triton X-100 extracts of Golgi membranes, the intact enzyme was cleaved by a variety of proteases to generate degradation products similar to those observed previously. At appropriate concentrations, chymotrypsin, pronase, and proteinase K generated 110,000-dalton species, while trypsin and Staphylococcus aureus V8 protease generated 115,000-dalton forms. Cleavage by chymotrypsin under mild conditions (10 micrograms/ml, 10 min, 20 degrees C) resulted in a complete conversion to a catalytically active 110,000-dalton form of the enzyme which was extremely resistant to further degradation. Attempts to demonstrate these protease digestions in nonpermeabilized Golgi membranes were unsuccessful, a result suggesting that the protease-sensitive regions are not accessible on the external surface of the membrane. In Golgi membranes permeabilized by treatment with 0.5% saponin, mannosidase II could readily be cleaved to the 110,000-dalton form by digestion with chymotrypsin under conditions similar to those which result in a proteolytic inactivation of galactosyltransferase, a lumenal Golgi membrane marker. Although mannosidase II catalytic activity was not diminished by this chymotrypsin digestion, as much as 90% of the enzyme activity was converted to a nonsedimentable form. To examine the effect of the proteolytic cleavage on the partition behavior of the enzyme, control and chymotrypsin-treated Triton X-114 extracts of Golgi membranes were examined by phase separation at 35 degrees C. The undigested enzyme partitioned into the detergent phase consistent with its location as an integral Golgi membrane protein, while the 110,000-dalton chymotrypsin-digested enzyme partitioned almost exclusively into the aqueous phase in a manner characteristic of a soluble protein. These results suggest that mannosidase II catalytic activity resides in a proteolytically resistant, hydrophilic 110,000-dalton domain. Attachment of this catalytic domain to the lumenal face of Golgi membranes is achieved by a proteolytically sensitive linkage to a 14,000-dalton hydrophobic membrane anchoring domain.  相似文献   

6.
When the particulate fraction from a rat liver homogenate was incubated with [3H]putrescine and calcium, the radioactive amine was incorporated into the membranes via a transglutaminase-mediated reaction. Fractionation of the membranes by isopycnic density gradient centrifugation revealed that the radioactive label was coincident with the 5'-nucleotidase and transglutaminase activities which serve as markers for the plasma membrane (Slife, C. W., Dorsett, M. D., Bouquett, G. T., Register, A., Taylor, E., and Conroy, S. Arch. Biochem. Biophys. 241, 329-336). If the labeled membranes were treated with digitonin and fractionated, the radioactivity and the plasma membrane enzyme activities coincidentally shifted to a greater density. Examination of the [3H]putrescine-labeled membranes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography showed that the largest amount of radioactivity was associated with a large molecular weight material that did not enter the acrylamide gel. Pulse-chase experiments indicated that the large aggregate already was present in the native membrane, or that it was formed very rapidly during the putrescine incubation. The complex did not result from putrescine cross-linking between proteins since dansylcadaverine and [3H]histamine were also selectively incorporated into it. These data show that there are protein substrates in the plasma membrane which are accessible to the membrane-associated transglutaminase and that the substrates form a large molecular weight aggregate which is not dissociated by sodium dodecyl sulfate and disulfide reducing agents.  相似文献   

7.
Previous studies have shown that most of the inositol 1,4,5-trisphosphate/inositol 1,3,4,5-tetrakisphosphate 5-phosphatase activity of rat hepatocytes is associated with the plasma membrane [Shears, Parry, Tang, Irvine, Michell & Kirk (1987) Biochem. J. 246, 139-147]. We now show that the specific activity of this enzyme is highest in the bile-canalicular domain of the plasma membrane, at the opposite pole of the hepatocyte from the presumed site of receptor-mediated formation of inositol 1,4,5-trisphosphate. In intact hepatocytes and in sealed membrane vesicles originating from the bile-canalicular domain of the plasma membrane, the 5-phosphatase activity was mostly latent and therefore located at the cytoplasmic surface. A substantial amount of 5-phosphatase was also found in rat liver endosomal fractions, particularly a 'late' endosomal subfraction, indicating that this enzyme may be transported between the sinusoidal plasma membrane and other cellular membranes.  相似文献   

8.
Insulin binding to rat liver plasma membranes promotes proteolysis of the Mr 135,000 alpha subunit of the insulin receptor to a fragment of Mr 120,000 (Lipson, K. E., Yamada, K., Kolhatkar, A. A., and Donner, D. B. (1986) J. Biol. Chem. 261, 10833-10838). The enzyme that catalyzes this degradation copurifies with plasma membranes and cannot be identified in any other cellular organelle or in cytosol. The proteinase has optimal activity above pH 7 and is an integral protein based upon its resistance to extraction with 2 M NaCl. After affinity labeling, degraded insulin receptors were identified in plasma membranes isolated from a liver perfused with 1 nM 125I-insulin for 10 min at 37 degrees C, indicating that proteolysis occurs in the hepatocyte cell membrane under physiological conditions. Microsomes do not contain the receptor degrading activity or a detectable amount of degraded receptors under basal conditions. After perfusion of a liver with 125I-insulin, Mr 135,000 and Mr 120,000 complexes were detected in microsomes, suggesting that both intact and degraded receptors can be internalized. The initial absence of degraded receptors in plasma membranes suggests that, following internalization, such sites do not recycle. Thus, hormone-induced proteolysis of the insulin receptor begins at the surface of the rat hepatocyte and can lead to loss of receptors from the plasma membrane.  相似文献   

9.
Insulin receptors in rat liver plasma membranes contain two alpha- and two beta-subunits held together by interchain disulphide bonds ([alpha beta]2 receptors). Affinity-labelled receptors were digested with chymotrypsin or elastase and then exposed to dithiothreitol before solubilization from membranes and SDS/polyacrylamide-gel electrophoresis. This resulted in partial reduction and isolation of Mr-225,000 alpha beta, Mr-200,000 alpha 1 beta, Mr-165,000 alpha beta 1 and Mr-145,000 alpha 1 beta 1 receptor halves containing intact (alpha, beta) or degraded (alpha 1, beta 1) subunits. The ability to identify half-receptor complexes containing intact or degraded subunits made it possible to assay each subunit simultaneously for insulin-induced proteolysis in isolated plasma membranes or during perfusion of rat liver in situ with insulin. In liver membranes, insulin binding increased the fraction of receptors containing degraded alpha-subunits to about one-third of the total population during 2 h of incubation at 23 degrees C. beta-Subunit proteolysis increased only minimally during this time. Plasma membranes isolated from livers perfused with insulin at 37 degrees C contained degraded alpha-subunits but only intact beta-subunits, showing that insulin induced cell-surface proteolysis of the binding, but not the kinase, domain of its receptor. Since previous observations [Lipson, Kolhatkar & Donner (1988) J. Biol. Chem 263, 10495-10501] have shown that receptors containing degraded alpha-subunits are internalized but do not recycle, it is possible that cell-surface degradation may play a role in the regulation of insulin-receptor number in hepatic tissue. Proteolysis of the beta-subunit is not a likely mechanism by which receptor-kinase activity may be attenuated under physiological conditions.  相似文献   

10.
The effects of phospholipids on the properties of hepatic 5'-nucleotidase   总被引:1,自引:0,他引:1  
Arrhenius plots of 5'-nucleotidase activity in microsomes or plasma membranes from rat liver exhibited transitions at approximately 35 degrees C. The enzyme was purified from homogenates after solubilization in 2% Triton X-100 and 1% sodium deoxycholate. After the initial steps of the purification, the enzyme was recovered in membranes, as judged by both thin section and freeze-fracture electron microscopy, which contained sphingomyelin, phosphatidylcholine, and phosphatidylethanolamine. The purest fractions of 5'-nucleotidase were enriched approximate 3,000-fold, consisted of similar membranes, but only contained sphingomyelin. Thermal transitions were detected in Arrhenius plots of 5'-nucleotidase after detergent solubilization, in the membranes which contained the three phospholipids, but not in the purified fraction which contained only sphingomyelin; transitions were also detected after reassociation of the purified enzyme with microsomal or plasma membrane lipids and phosphatidylcholine but not with phosphatidylethanolamine. Phosphatidylcholines containing specific fatty acids all affected the energy of activation of 5'-nucleotidase, and the detergent Sarkosyl, which has been shown to dissociate phospholipids from 5'-nucleotidase (Evans, W. H., and Gurd, J. W. (1973) Biochem. J. 133, 189-199), caused a marked decrease in the stability of the enzyme to heating. Inhibition of 5'-nucleotidase by concanavalin A followed by reactivation with alpha-methyl-D-mannoside resulted in linear Arrhenius plots of 5'-nucleotidase activity in membrane fractions, and in lower transition temperatures for the detergent, solubilized enzyme. It is concluded that in situ, 5'-nucleotidase interacts with both sphingomyelin and phosphatidylcholine; the first apparently influences the stability of the enzyme and the second, the energy of activation. In addition, the lipid environment of the enzyme seems to be altered as a result of lectin binding.  相似文献   

11.
The effect of the hepatocarcinogen dimethylnitrosamine on rat liver plasma membrane adenylate cyclase activity and lipid fluidity was assessed. Glucagon-stimulated adenylate cyclase activity exhibited a complex response to increasing concentrations of dimethylnitrosamine, whereas fluoride-stimulated adenylate cyclase activity was progressively inhibited. Maximal inhibitory effects were observed at a concentration of 15 mM in both cases. The activity of detergent-solubilized adenylate cyclase was unaffected by dimethylnitrosamine. ESR analysis using a fatty acid spin probe showed that dimethylnitrosamine produced a marked, dose-dependent reduction in the fluidity of the plasma membrane with a maximal effect occurring at 20 mM. Dimethylnitrosamine also elevated the temperature at which the lipid phase separation occurred in rat liver plasma membranes, from 28 degrees C to 31 degrees C. The non-carcinogenic but structurally similar compound, dimethylamine hydrochloride neither inhibited adenylate cyclase nor decreased plasma membrane fluidity. It is suggested that the decrease in membrane fluidity, induced by dimethylnitrosamine, via its effects on membrane fluidity, could influence plasma membrane function and cellular regulation.  相似文献   

12.
A serine endopeptidase was partially purified from rat liver plasma membranes by using a four-step procedure: solubilization with N-lauroylsarcosine; Ultrogel AcA-34 chromatography; CM Affi-Gel blue chromatography; agarose-soybean trypsin inhibitor chromatography. This enzyme was found to hydrolyze casein and various chromogenic peptide substrates; highest activity occurred with H-D-Val-Leu-Arg-p-nitroanilide, reported to be a specific substrate for human glandular kallikreins. The enzyme was heat-sensitive, showed a pH optimum between 8.0 and 9.0 and was inhibited by D-Phe-L-Phe-L-Arg-CH2Cl, aprotinin, diisopropyl fluorophosphate (DFP), soybean trypsin inhibitor, phenylmethylsulphonyl fluoride, leupeptin, antipain and dithiothreitol. This liver plasma membrane proteinase has an apparent molecular weight of about 30 000 as determined by Ultrogel AcA-34 chromatography and by autoradiography of [3H]DFP-labelled protein electrophoresis.  相似文献   

13.
A plasma membrane-rich fraction has been separated from liver cells and cells of two solid rat tumors. D23 hepatoma and MC7 sarcoma. On the basis of marker enzyme activity the membranes separating at the 31-41% interface on the discontinuous sucrose gradient were enriched 15- to 19-fold. No significant differences in the phospholipid (PL) composition of the three membrane fractions were observed. The PL fatty acid (FA) composition showed that the percentage of unsaturated FA in all three membranes was between 43 and 48%. However, the oleic acid:PUFA ratio was much greater from tumor membranes. Membrane cholesterol was also significantly lower for cells from both tumors compared with liver cells. The DPH fluorescence polarization of the membrane fractions showed that the membranes from cells of both tumors are significantly less ordered than those of liver at all temperatures measured (4-50 degrees C). The Mg2+ ATPase activity of the plasma membranes is inactivated by hyperthermia treatments. The enzyme from liver cells was more thermostable (LT50 = 53.86 degrees C) than that from cells of either D23 (LT50 = 47.51 degrees C) or MC7 (LT50 = 46.34 degrees C) tumors.  相似文献   

14.
We have previously demonstrated that 5'-nucleotidase, known as a plasma membrane enzyme, is also distributed both in rat liver tritosomal membranes and contents (J. Biochem. 101, 1077-1085, 1987). When the lysosomal membranes isolated from rat livers were incubated with phosphatidylinositol-specific phospholipase C purified from B. thuringiensis, about 70% of 5'-nucleotidase activity was released from the membranes. Judging from the result by phase separation with Triton X-114, the enzyme solubilized by the phospholipase C digestion showed a hydrophilic nature such as that of the tritosomal contents. Immunoblot analysis showed that the molecular weight of 5'-nucleotidase released from the lysosomal membranes by the phospholipase C digestion was almost identical with that of the enzymes from the Tritosomal contents. The above results showed that the phosphatidylinositol-specific phospholipase C-like enzyme in the lysosomes may be responsible for the conversion of the lysosomal membrane-bound 5'-nucleotidase to the soluble form present in the lysosomal matrix.  相似文献   

15.
Transglutaminase in the rat lung is tightly associated with the insoluble matrix which is not extractable with detergent, 0.5 M NaCl, and 40% glycerol solutions. The insoluble matrix was found to be rich in heparin sulfate and poor in collagen, elastin, and DNA. The lung transglutaminase was found to be distinct from tissue transglutaminase (identifiable with the well-characterized guinea pig liver transglutaminase) in its retention volume in DEAE-Sephacel columns and its Kd value in gel-filtration columns. The enzyme was activated 6-8-fold with the sulfhydryl reagent dithiothreitol. This activation was accompanied with the dissociation of enzyme from the tightly bound insoluble matrix and resulted in changes of the molecular properties of the enzyme--increase in affinity for anion-exchanger and decrease in Stokes radius. Addition of 50 mM KSCN induced a 2-fold increase in SH-dependent activation of transglutaminase activity. These results suggest that sulfhydryl agents may play a role in the activation and compartmental translocation of the transglutaminase in the lung.  相似文献   

16.
J Y Le Deaut  M Ledig  P Mandel 《Biochimie》1976,58(9):1017-1029
A method for isolation of a soluble ATPase from rat liver mitochondria after freeze thaw cycling is described. Two enzymatically active fractions were separated by DEAE-cellulose chromatography (ATPase 1 and ATPase 2). ATPase 1 has been purified 300 fold. ATPase 1 was homogenous as judged by polyacrylamide gel electrophoresis. The optimum pH of the enzyme was 5.8-6.0 and the optimum temperature was 45 degrees C. The enzyme follows Michaelis-Menten kinetics: Km (9 X 10(-4) M), Vmax (23,6 mumoles Pi released X min -1 X mg protein -1). The enzyme hydrolysed nucleoside triphosphates, but was inactive upon nucleoside di and monophosphates, glucose 6-phosphate, phosphoserine, pyrophosphate and glycerol 2-phosphate. In contrast to membrane bound ATPase, cations have no effect on the enzyme activity. Nucleoside di and mono phosphates and glycerol 2 phosphate inhibited competitively the enzyme. The enzyme was not affected by oligomycin, but was stimulated by lactate, 2-mercaptoethanol and dithiothreitol.  相似文献   

17.
Plasma membranes were isolated after binding liver and hepatoma cells to polylysine-coated polyacrylamide beads, and the effect of concanavalin A on the membrane-bound Mg2+ -ATPase and the Mg2+ -ATPase solubilized by octaethylene glycol monododecyl ether (C12E8) was studied. In the experiment of membrane-bound Mg2+ -ATPase, plasma membranes were pretreated with Concanavalin A and the activity was assayed. Concanavalin A stimulated the activity of both liver and hepatoma enzymes assayed above 20 degrees C. Concanavalin A abolished the negative temperature dependency characteristic of liver plasma membrane Mg2+ -ATPase. On the other hand, Concanavalin A prevented the rapid inactivation due to storage at -20 degrees C, which was characteristic of hepatoma plasma membrane Mg2+ -ATPase. With solubilized Mg2+ -ATPase from liver plasma membranes, the negative temperature dependency was not observed. Concanavalin A, which was added to the assay medium, stimulated the activity of the enzyme solubilized in C12E8 at a high ionic strength. However, Concanavalin A failed to show any effect on the enzyme solubilized in C12E8 at a low ionic strength. With solubilized Mg2+ -ATPase from hepatoma plasma membranes, Concanavalin A could not prevent the inactivation of the enzyme during incubation at -20 degrees C.  相似文献   

18.
Incubation of rat liver plasma membranes with liposomes of dioleoyl phosphatidic acid (dioleoyl-PA) led to an inhibition of adenylate cyclase activity which was more pronounced when fluoride-stimulated activity was followed than when glucagon-stimulated activity was followed. If Mn2+ (5 mM) replaced low (5 mM) [Mg2+] in adenylate cyclase assays, or if high (20 mM) [Mg2+] were employed, then the perceived inhibitory effect of phosphatidic acid was markedly reduced when the fluoride-stimulated activity was followed but was enhanced for the glucagon-stimulated activity. The inhibition of adenylate cyclase activity observed correlated with the association of dioleoyl-PA with the plasma membranes. Adenylate cyclase activity in dioleoyl-PA-treated membranes, however, responded differently to changes in [Mg2+] than did the enzyme in native liver plasma membranes. Benzyl alcohol, which increases membrane fluidity, had similar stimulatory effects on the fluoride- and glucagon-stimulated adenylate cyclase activities in both native and dioleoyl-PA-treated membranes. Incubation of the plasma membranes with phosphatidylserine also led to similar inhibitory effects on adenylate cyclase and responses to Mg2+. Arrhenius plots of both glucagon- and fluoride-stimulated adenylate cyclase activity were different in dioleoyl-PA-treated plasma membranes, compared with native membranes, with a new 'break' occurring at around 16 degrees C, indicating that dioleoyl-PA had become incorporated into the bilayer. E.s.r. analysis of dioleoyl-PA-treated plasma membranes with a nitroxide-labelled fatty acid spin probe identified a new lipid phase separation occurring at around 16 degrees C with also a lipid phase separation occurring at around 28 degrees C as in native liver plasma membranes. It is suggested that acidic phospholipids inhibit adenylate cyclase by virtue of a direct headgroup specific interaction and that this perturbation may be centred at the level of regulation of this enzyme by the stimulatory guanine nucleotide regulatory protein NS.  相似文献   

19.
We have used a combined biochemical and morphological approach to establish the suitability of certain endogenous and exogenous domain markers for monitoring the separation of rat hepatocyte plasma membrane domains in sucrose density gradients. As endogenous domain markers, we employed two of the integral plasma membrane protein antigens, HA 4 and CE 9, localized to the bile canalicular and sinusoidal/lateral domains, respectively, of the hepatocyte plasma membrane in rat liver tissue (Hubbard, A. L., J. R. Bartles, and L. T. Braiterman, 1985, J. Cell Biol., 100:1115-1125). We used immunoelectron microscopy with a colloidal gold probe to demonstrate that HA 4 and CE 9 retained their domain-specific localizations on isolated hepatocyte plasma membrane sheets. When the plasma membrane sheets were vesiculated by sonication and the resulting vesicles were centrifuged to equilibrium in sucrose density gradients, quantitative immunoblotting revealed that the vesicles containing HA 4 and those containing CE 9 exhibited distinct density profiles. The density profile for the bile canalicular vesicles (marked by HA 4) was characterized by a single peak at a density of 1.10 g/cm3. The density profile for the sinusoidal/lateral vesicles (marked by CE 9) was bimodal, with a peak in the body of the gradient at a density of 1.14 g/cm3 and a smaller amount in the pellet (density greater than or equal to 1.17 g/cm3). We used this sucrose gradient fractionation as a diagnostic procedure to assign domain localizations for several other hepatocyte plasma membrane antigens and enzyme activities. In addition, we used the technique to demonstrate that 125I-wheat germ agglutinin, introduced during isolated liver perfusion at 4 degrees C, can serve as an exogenous domain marker for the sinusoidal domain of the rat hepatocyte plasma membrane.  相似文献   

20.
Developing a method for isolating skate (Raja erinacea) basolateral liver plasma membranes, as well as characterizing the lipid composition and fluidity of these membranes, was the primary purpose of this study. Membranes were isolated using self-generating Percoll gradients. Marker enzyme studies indicate that this preparation is highly enriched in the basolateral domain of the liver plasma membrane and largely free of contamination by intracellular organelles or canalicular membranes. Further, these membranes contain the agency responsible for Na(+)-dependent alanine transport. This finding indicates that this membrane preparation will be useful for the study of skate liver plasma membrane transport processes. The lipid composition and fluidity (as assessed by the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene) of the skate basolateral liver plasma membrane shows little variation among preparations. Further, DPH anisotropy plotted as a function of temperature yields a straight line (r = 0.99) which indicates that there is no lipid phase change in these membranes from 4 degrees to 37 degrees C. The membrane preparation does contain substantial phospholipase A2 activity. The function of this enzyme is, in part, to modify membrane lipid composition and fluidity in response to temperature variations; therefore, this finding suggests that in situ lipid metabolizing enzymes may play a central role in the adaptation of skate basolateral liver plasma membranes to changes in the ambient temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号