首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temperature dependence of the Ca2+-dependent ATPase activity and of the conformational fluctuation of the ATPase molecule has been measured for four kinds of preparations: fragmented sarcoplasmic reticulum, MacLennan's enzyme (purified ATPase preparation), and DOL and egg PC-ATPase (purified ATPase preparations in which lipids are replaced with dioleoyllecithin and egg yolk lecithin, respectively). It has been found that Arrhenius plots of the Ca2+-dependent ATPase activity show a break at about 18 degrees C for all the preparations. Hydrogen--deuterium exchange kinetics of the peptide NH protons were used to measure the conformational fluctuation of the protein molecules. Van't Hoff plots of the conformational fluctuation amplitude of a region near the surface of the ATPase molecule also show a break at about 18 degrees C for all the preparations. It is concluded that the break at around 18 degrees C is not related to a gel-liquid crystalline transition of lipids but to a change in the conformation of the ATPase molecule existing in fluid lipids.  相似文献   

2.
Since it was possible for Ca2+,Mg2+-ATPase of sarcoplasmic reticulum (SR) to change its aggregation state in the membrane depending on temperature, and since the change could be the cause of the break in the Arrhenius plot of Ca2+,Mg2+-ATPase activity, the aggregation state of Ca2+,Mg2+-ATPase at 0 degrees C in the membrane was compared with that at 35 degrees C by freeze-fracture electron microscopy. These temperatures are below and above the break in the Arrhenius plot (about 18 degrees C), respectively. Two kinds of samples were used; fragmented SR vesicles and egg PC-ATPase vesicles, a reconstituted preparation from purified Ca2+,Mg2+-ATPase and egg yolk phosphatidylcholine (egg PC). For both the appearance of particles in the fracture faces of the samples fixed at 0 degrees C was similar to that at 35 degrees C, and phase separation between protein and lipid was not observed even at 0 degrees C. The size of the particles was measured and histograms of the sizes at 0 degrees C and 35 degrees C were made. The histogram at 0 degrees C was similar to that at 35 degrees C with a peak at 7.1 nm, which is 1-2 nm smaller than the value reported so far. The number of the particles per unit area of the membrane was also counted. The value at 0 degrees C was similar to that at 35 degrees C. These results indicate that Ca2+,Mg2+-ATPase of SR exists in the same aggregation state (estimated as oligomer based on the values obtained in this experiment) between 0 degrees C and 35 degrees C. Based on the results of this study we think that the break in the Arrhenius plot of Ca2+,Mg2+-ATPase activity in SR is not caused by the change in the aggregation state of Ca2+,Mg2+-ATPase.  相似文献   

3.
The hydrophobic spin label used in ESR showed that the iminoxyl radical rotation in the native membrane of sarcoplasmatic reticulum (SR) occurred much faster than in the membranes, modified by a synthetic lipid. Such effect was observed throughout the whole temperature range (7-40 degrees). Experimental technique for the modification of the SR membrane and the lipid by ultrasonic treatment has been developed. Synthetic lipids without ultrasonic treatment did not inhibit the activity of Ca2+-ATPase. The change in both the enzyme activity and its ability to transport the Ca2+ ions through the membrane vesicules was observed after the phospholipids incorporation into the SR membrane. The investigation of the temperature dependence (in Arrhenius coordinates) of native and modified by lecithin Ca2+-ATPase after ultrasonic treatment and also of a "pure enzyme" showed the presence of two sharp breaks at 20 degrees and 40-42 degrees. It was shown tha the break of an Arrhenius anamorphosis was caused by a lipid environment of ATPase, "melting" of a phospholipid bilayer. The break at 20-22 degrees was observed in all cases and even after the incorporation of all the lipids into the SR membrane. This phenomenon can be explained by the distortion of the protein-lipid interaction, affecting the conformation mobility of protein and the geometry of its catalytically active center.  相似文献   

4.
In order to investigate the roles of the physical states of phospholipid and protein in the enzymatic behavior of the Ca2+ -ATPase from sarcoplasmic reticulum, we have modified the lipid phase of the enzyme, observed the effects on the enzymatic activity at low temperatures, and correlated these effects with spectroscopic measurements of the rotational motions of both the lipid and protein components. Replacement of the native lipids with dipalmitoyl phosphatidylcholine inhibits ATPase activity and decreases both lipid fluidity, as monitored by EPR spectroscopy on a stearic acid spin label, and protein rotational mobility, as monitored by saturation transfer EPR spectroscopy on the covalently spin-labeled enzyme. Solubilization of the lipid-replaced enzyme with Triton X-100 reverses all three of these effects. Ten millimolar CaCl2 added either to the enzyme associated with the endogenous lipids or to the Triton X-100 soulbilized enzyme inhibits both ATPase activity and protein rotational mobility but has no detectable effect on the lipid mobility. These results are consistent with the proposal that both lipid fluidity and protein rotational mobility are essential for enzymatic activity.  相似文献   

5.
Sarcoplasmic reticulum Ca2+-ATPase from rabbit skeletal muscle has an Arrhenius curve of enzyme activity with a discontinuity at about 20 degrees C. Preparations treated with FeSO4 and ascorbic acid and from a vitamin E-deficient dystrophic rabbit have 22% of the normal activity and a linear Arrhenius curve (Promkhatkaew, D., Komaratat, P., & Wilairat, P. (1985) Biochem. Int. 10, 937-943). All three preparations were cross-linked to the same extent by dimethyl suberimidate and copper-phenanthroline reagent at temperatures above and below the temperature of the Arrhenius discontinuity. Both iron-ascorbate-treated Ca2+-ATPase and that from a vitamin E-deficient animal had 50% of the normal sulfhydryl content, but the disulfide and free amino contents were unaltered. These observations suggest that loss of sulfhydryl groups through lipid peroxidation, both in vivo and in vitro, resulted in reduction of Ca2+-ATPase activity and loss of the break in the Arrhenius plot. Changes in Ca2+-ATPase polypeptide aggregational state could not account for the discontinuity in the Arrhenius curve as revealed by the similar extent of cross-linking of the three enzyme preparations at temperatures above and below the temperature of the Arrhenius discontinuity.  相似文献   

6.
The Ca2+-stimulated Mg2-dependent ATPase activities (Ca2+-ATPase) of erythrocyte-ghost membranes from patients with Duchenne muscular dystrophy (DMD) and carriers of DMD were compared with activities of normal controls. The Ca2+-ATPase activity of DMD-patient ghost preparations was found to follow the same pattern of activation by Ca2+ as the control membranes. However, the Ca2+-ATPase activity in DMD and some DMD-carrier preparations was substantially elevated compared with controls. To characterize further the elevated Ca2+-ATPase activity found in DMD-patient ghost membrane preparations, we estimated kinetic parameters using both fine adjustment and weighting methods to analyse our experimental data. It was established that in both DMD and DMD-carrier preparations the increase in Ca2+-ATPase activity was reflected by a significant increase in Vmax. rather than by any change in Km. The response of the membrane Ca2+-ATPase activity to changes in temperature was also investigated. In all preparations a break in the Arrhenius plot occurred at 20 degrees C, and in DMD and DMD-carrier preparations an elevated Ca2+-ATPase activity was detected at all temperatures. Above 20 degrees C the activation energy for all types of preparation was the same, whereas below this temperature there appeared to be an elevated activation in DMD and DMD-carrier preparations compared with normal controls. The concept that a generalized alteration in the physicochemical nature of the membrane lipid domain may be responsible for the many abnormal membrane properties reported in DMD is discussed.  相似文献   

7.
We have investigated the relationship between function and molecular dynamics of both the lipid and the Ca-ATPase protein in sarcoplasmic reticulum (SR), using temperature as a means of altering both activity and rotational dynamics. Conventional and saturation-transfer electron paramagnetic resonance (EPR) was used to probe rotational motions of spin-labels attached either to fatty acid hydrocarbon chains or to the Ca-ATPase sulfhydryl groups in SR. EPR studies were also performed on aqueous dispersions of extracted SR lipids, in order to study intrinsic lipid properties independent of the protein. While an Arrhenius plot of the Ca-ATPase activity exhibits a clear change in slope at 20 degrees C, Arrhenius plots of lipid hydrocarbon chain mobility are linear, indicating that an abrupt thermotropic change in the lipid hydrocarbon phase is not responsible for the Arrhenius break in enzymatic activity. The presence of protein was found to decrease the average hydrocarbon chain mobility, but linear Arrhenius plots were observed both in the intact SR and in extracted lipids. Lipid EPR spectra were analyzed by procedures that prevent the production of artifactual breaks in the Arrhenius plots. Similarly, using sample preparations and spectral analysis methods that minimize the temperature-dependent contribution of local probe mobility to the spectra of spin-labeled Ca-ATPase, we find that Arrhenius plots of overall protein rotational mobility also exhibit no change in slope. The activation energy for protein mobility is the same as that of ATPase activity above 20 degrees C; we discuss the possibility that overall protein mobility may be essential to the rate-limiting step above 20 degrees C.  相似文献   

8.
Enzyme preparations with variable phospholipid contents were obtained by removing lipids from sarcoplasmic reticulum with deoxycholate. Preparations containing from 90 to 37 phospholipids per enzyme showed normal values of both Ca2+-ATPase activity and steady-state phosphoenzyme levels. Fractions containing 37 to 23 phospholipids per enzyme had a reduced ATPase activity but normal phosphoenzyme levels, showing that in this range of lipid content the ATPase reaction is inhibited in a reaction step subsequent to phosphoenzyme formation but prior to phosphoenzyme decomposition. Delipidation below 23 lipids per enzyme caused a marked reduction of the amount of phosphoenzyme formed, so that although both reactions require lipids, fewer lipids are required for phosphoenzyme formation than for decomposition. The effect of lipid removal could be completely reversed by readdition of lipids to fractions containing more than 11 lipids per enzyme. It is proposed that phosphoenzyme formation requires full occupancy of a boundary domain of 23 lipids per enzyme, and that the selective inhibition of phosphoenzyme decomposition at higher lipid contents is caused by a decrease in the rotational mobility of the enzyme.  相似文献   

9.
The membrane-bound adenosine triphosphatase (ATPase) activity of Acholeplasma laidlawii B differs in many respects from the common (Mg2+, Ca2+)-ATPase activity of higher bacteria, most notably in that it is specifically activated by Mg2+ and strongly and specifically stimulated by Na+ (or Li+). Various inhibitors diminish the ATPase activity with a concentration dependence which suggests that a single enzyme species is responsible for all of the observed ATP hydrolytic activity (both basal and Na+ stimulated). The Km for ATP is influenced by temperature but not by membrane lipid fatty acid composition. Vmax is influenced by both of these factors, showing a break in Arrhenius plots which falls below the lipid phase transition midpoint but well above the lower boundary when a phase transition occurs within the temperature range studied. The apparent energy of activation for Vmax is strongly influenced by lipid fatty acid composition both above and below the break. When whole cells of A. laidlawii B are incubated in KCl or NaCl buffers, they rapidly swell and lyse if deprived of an energy source or treated with ATPase inhibitors at concentrations which significantly inhibit enzyme activity in isolated membranes, whereas in sucrose or MgSO4 buffers of equal osmolarity, the cells are stable under these conditions. These results suggest that the membrane ATPase of A. laidlawii B is intimately associated with the membrane lipids and that it functions as a monovalent cation pump which regulates intracellular osmolarity as the (Na+, K+)-ATPase does in eucaryotes.  相似文献   

10.
In order to evaluate the role of lipids in the function of membrane ATPase reactions, the apparent activation energies of membrane-bound (Na+ + K+)-ATPase and membrane-bound Mg2+-ATPase have been measured under conditions frequently supposed to alter the membrane lipids in vitro.In the case of (Na+ + K+)-ATPase, the untreated enzyme was shown to have two different activation energies as shown by an Arrhenius plot comprising two straight lines which intersect at the “critical temperature.” Treatment of the preparation with detergents or with phospholipase C causes some alteration in the spécifie activity of the enzyme but did not significantly alter the activation energies or the critical temperature. After treatment with phospholipase A, however, the Arrhenius plot appeared linear over the entire temperature range studied. Subsequent treatment of phospholipase A-treated preparations with phosphatidylserine restored the control response.Conversely, untreated preparations of Mg2+-ATPase give an Arrhenius plot which is neither linear nor composed of two intersecting straight lines. This plot, which we regard as curvilinear, does not permit a unique value of the activation energy to be determined. The shape of this plot is unaltered by detergent or by treatment with phospholipase C. In contrast to (Na+ + K+)-ATPase, it is also unaffected by treat-with phospholipase A or phospholipase A followed by phosphatidylserine.We conclude that although (Na+ + K+)-ATPase and Mg2+-ATPase are frequently closely associated in many membranes, their functions involve the presence of different membrane lipids.  相似文献   

11.
The ATP-dependent Ca2+ transport in sarcoplasmic reticulum involves transitions between several structural states of the Ca2(+)-ATPase, that occur without major changes in the secondary structure. The rates of these transitions are modulated by the lipid environment and by interactions between ATPase molecules. Although the Ca2(+)-ATPase restricts the rotational mobility of a population of lipids, there is no evidence for specific interaction of the Ca2(+)-ATPase with phospholipids. Fluorescence polarization and energy transfer (FET) studies, using site specific fluorescent indicators, combined with crystallographic, immunological and chemical modification data, yielded a structural model of Ca2(+)-ATPase in which the binding sites of Ca2+ and ATP are tentatively identified. The temperature dependence of FET between fluorophores attached to different regions of the ATPase indicates the existence of 'rigid' and 'flexible' regions within the molecule characterized, by different degrees of thermally induced structural fluctuations.  相似文献   

12.
Methods for preparing native scallop sarcoplasmic reticulum vesicles, largely purified membranous scallop sarcoplasmic reticulum Ca2+-ATPase, and nonionic detergent-solubilized sarcoplasmic reticulum Ca2+-ATPase are described. The effect of a range of polyoxyethylene-based detergents on the solubilized Ca2+-ATPase was tested. Decaethylene glycol dodecyl ether (C12E10) supported the highest levels of activity, although C12E8 and C12E9 were more routinely used. Arrhenius plots of Ca2+-ATPase activity, where the assays were carried out with the same pH at all temperatures (7.4), showed a region of nonlinearity at 10 degrees C. A very similar plot was obtained when no compensation was made for pH variation with temperature. Both the break in the Arrhenius plot and the activation energies for the scallop sarcoplasmic reticulum above and below the break were very similar to those found for lobster sarcoplasmic reticulum (Madeira, V. M. C., Antunes-Madeira, M. C., and Carvalho, A. R. (1974) Biochem. Biophys. Res. Commun. 65, 997-1003). The Arrhenius plot of the scallop Ca2+-ATPase in C12E8 no longer showed the nonlinearity at 10-12 degrees C seen with the native sarcoplasmic reticulum, but instead a break now appeared at 20-21 degrees C. This is close to the Arrhenius break temperature of rabbit Ca2+-ATPase in C12E8 and of a perturbation in C12E8 (Dean, W. L. (1982) Biophys. J. 37, 56-57).  相似文献   

13.
Temperature dependence of Ca(2+)-ATPase from the sarcoplasmic reticulum (SR) in rabbit muscle has been widely studied, and it is generally accepted that a break point in Arrhenius plot exist at approximately 20 degrees C. Whether the break point arises as a result of temperature dependent changes in the enzyme or its membrane lipid environment is still a matter of discussion. In this study we compared the temperature dependence and Ca(2+)-dependence of SR Ca(2+)-ATPase in haddock (Melanogrammus aeglefinus), salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss) and zebra cichlid (Cichlasoma nigrofasciatum). The Arrhenius plot of zebra cichlid showed a break point at 20 degrees C, and the haddock Arrhenius plot was non-linear with pronounced changes in slope in the temperature area, 6-14 degrees C. In Arrhenius plot from both salmon and rainbow trout a plateau exists with an almost constant SR Ca(2+)-ATPase activity. The temperature range of the plateau was 14-21 and 18-25 degrees C in salmon and rainbow trout, respectively. Ca(2+)-dependence in the four different fish species investigated was very similar with half maximal activation (K(0.5)) between 0.2 and 0.6 micro M and half maximal inhibition (I(0.5)) between 60 and 250 micro M. Results indicated that interaction between SR Ca(2+)-ATPase and its lipid environment may play an important role for the different Arrhenius plot of the different types of fish species investigated.  相似文献   

14.
Highly purified sarcoplasmic reticulum (SR) has been prepared from dog hearts and has been incubated with the triplet probe erythrosinyl isothiocyanate to specifically label the Ca2+-stimulated ATPase (Ca2+-ATPase) of the SR. The rotational mobility of the Ca2+-ATPase has been studied in this erythrosin-labelled SR using time-resolved phosphorescence polarization. Qualitatively, the mobility of the cardiac Ca2+-ATPase resembles that of skeletal muscle SR Ca2+-ATPase. Addition of Ca2+ to SR affects the mobility of the Ca2+-ATPase in a way consistent with a segment of the ATPase altering its orientation relative to the plane of the membrane. Phosphorylation of phospholamban in cardiac SR by the purified catalytic subunit of cAMP-dependent protein kinase, which is known to increase the activity of the Ca2+-ATPase by deinhibition, also alters measured anisotropy. The changes observed are not compatible with dissociation of the Ca2+-ATPase from phospholamban after the latter is phosphorylated. The data are more consistent with phospholamban associating with the Ca2+-ATPase following phosphorylation, or more complex models in which only the hydrophilic domain of phospholamban binds with and dissociates from the Ca2+-ATPase.  相似文献   

15.
The fluidity of human erythrocyte membrane, and the effect of chlorpromazine at prelytic and lytic concentrations on the fluidity have been studied by using three kinds of fatty acid spin labels and measuring the temperature dependence of Mg2+-ATPase activity. The Arrhenius plot of the apparent rotational correlation time, tau c, for probes I(12,3) and I(5,10) showed an abrupt discontinuity at about 30 degrees C, and the plot for I(1,14) at 25 degrees C, indicating that a large difference in the fluidity exists between the interior and the outer surface of the lipid bilayer. The portions of the fatty acid chain near the ten carbon bond lengths removed from the bilayer surface became more fluid by chlorpromazine treatment; there was a decrease in the break point to around 26 degrees C following treatment with 0.6 or 1 mM of the drug. Two breaks at 21 and 30 degrees C in the Arrhenius plot of the Mg2+-ATPase activity were observed in normal erythrocyte membrane. The activation energy of the Mg2+-ATPase reaction has the values of 3.0 and 22.1 kcal/mol above the upper break and below the lower break, respectively. The drug exposure induced only a slight shift in the break temperatures, while the treatment significantly enhanced the associated activation energies of the reaction. These results suggest that the boundary phospholipids of the Mg2+-ATPase in the membrane are probably more rigid than the bulk lipids.  相似文献   

16.
The susceptibility of the membranous Ca2+-ATPase of sarcoplasmic reticulum to enzymatic inactivation at hyperthermic temperatures was investigated. Inactivation produced a break in the Arrhenius plot at 45-46 degrees C and was accompanied by an increased mobility of spin label, covalently attached to the Ca2+-ATPase. MgADP and MgATP exerted a markedly stabilizing effect on inactivation, both at pH 7.0 and in acidic media. By contrast, high-affinity Ca2+ or Mg2+ binding only moderately stabilized Ca2+-ATPase (inactivation rates were decreased 2-3 times), and this effect was non-additive, i.e., only observed in the absence of the other divalent cation. But withdrawal of K+ and Na+ gave rise to a pronounced destabilization that could be reversed efficiently by high concentrations of Ca2+ or Mg2+. These results are compared with a previous study on detergent solubilized Ca2+-ATPase (M?ller, J.V., Lind, K.E. and Andersen, J.P. (1980) J. Biol. Chem. 255, 1912-1920) which showed the enzyme to be markedly stabilized by Ca2+ as well as by nucleotide. It is concluded that, due to the presence of nucleotide, inactivation of Ca2+-ATPase is not likely to occur during malignant hyperthermia and that the native environment of the lipid bilayer provides stabilization of the membrane-embedded and Ca2+-translocating domain of the Ca2+-ATPase.  相似文献   

17.
Bass gill microsomal preparations contain both a Na+, K+ and Mg2+-dependent ATPase, which is completely inhibited by 10(-3)M ouabain and 10(-2)M Ca2+, and also a ouabain insensitive ATP-ase activity in the presence of both Mg2+ and Na+. Under the optimal conditions of pH 6.5, 100 mM Na+, 20 mM K+, 5 mM ATP and 5 mM Mg2+, (Na+ + K+)-ATPase activity at 30 degrees C is 15.6 mumole Pi hr/mg protein. Bass gill (Na+ + K+)-ATPase is similar to other (Na+ + K+)-ATPases with respect to the sensitivity to ionic strength, Ca2+ and ouabain and to both Na+/K+ and Mg2+/ATP optimal ratios, while pH optimum is lower than poikilotherm data. The enzyme requires Na+, whereas K+ can be replaced efficiently by NH+4 and poorly by Li+. Both Km and Vm values decrease in the series NH+4 greater than K+ greater than Li+. The break of Arrhenius plot at 17.7 degrees C is close to the adaptation temperature. Activation energies are scarcely different from each other and both lower than those generally reported. The Km for Na+ poorly decreases as the assay temperature lowers. The comparison with literature data aims at distinguishing between distinctive and common features of bass gill (Na+ + K+)-ATPase.  相似文献   

18.
It has been shown that in the enzyme preparations (EP) from normal brain tissue (NBT) a typical break on the Arrhenius plot appeared at 20-22 degrees C, nH for Na+ and K+ exceeding 1.7 and 1.4, respectively. In EP from tumoural brain tissue (TBT) no break on the Arrhenius plot at 20-22 degrees C was revealed, but it appeared at 27.5 + 30.5 degrees C. The nH for Na+ with Na+,K+-ATPase from TBT was only 0.9, but the cooperative binding of K+ was preserved (nH = 1.3). Electrophoregrams (EP) from TBT showed additional protein bands. The urea and digitonin treatment of EP from NBT induced a break on the Arrhenius plot at 27.5-30.5 degrees C. It is suggested that the break at 27.5-30.5 degrees C is, probably, accompanied by local changes in the conformation of protein components of the enzyme.  相似文献   

19.
The technique of saturation transfer electron spin resonance has been applied to study the rotational diffusion of spin-labeled Ca2+, Mg2+-dependent ATPase molecules in the membranes of sarcoplasmic reticulum vesicles. Comparison of the present data with those for spin-labeled hemoglobin undergoing isotropic rotation leads to a value of 2 X 10(-4) s for the apparent rotational correlation time at 20 degrees C for the membrane-bound protein. Consideration of the anisotropy of the Brownian rotation of the membrane-bound ATPase suggests that the true correlation time for the expected axial rotation may be somewhat smaller than the apparent value. An Arrhenius plot of the rotational motion shows a break, which is interpreted as indicating the occurrence of a conformational change of the ATPase molecule at about 15 degrees C.  相似文献   

20.
Using spin-labeled fatty acid derivatives and maleimide, the effect of temperature on the structural state of various parts of the lipid bilayer of sarcoplasmic reticulum (SR) membranes and the segmental motion of the Ca-ATPase molecule were investigated. The mobility of the spin probes localized in the hydrophobic zone and the outer part of the SR membrane was shown to increase with a rise in temperature from 4 to 44 degrees C, the temperature of 20 degrees C being critical for these changes. In the presence of ATP, critical changes in the spin probe mobility occur at lower temperatures, while in the presence of ATP and Ca2+ they are observed at 20 degrees C for a spin probe localized in the outer part of the SR membrane. The mobility of a spin probe localized in the hydrophobic part of the membrane increases linearly with a rise in temperature. In the absence of ligands, the segmental motion of Ca-ATPase changes linearly within a temperature range of 10-30 degrees C. However, when ATP alone or ATP and Ca2+ are simultaneously added to the incubation mixture, the protein mobility undergoes critical changes at 20 degrees C. The Arrhenius plots for ATPase activity and Ca2+ uptake rate in SR membrane preparations also have a break at 20 degrees C. It is assumed that changes in the structural state of membrane lipids produce conformational changes in the Ca-ATPase molecule; the enzyme seems to be unsensitive to the structural state of the membrane lipid matrix in the absence of the ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号