首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we investigated effects of a novel NAD(P)H oxidase (Nox)-inhibitor 3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine (VAS2870) on oxidized low-density lipoprotein (oxLDL)-mediated reactive oxygen species (ROS) formation in human endothelial cells. Primary cultures of human umbilical vein endothelial cells were cultured to confluence and ROS formation was induced with 50microg/ml oxLDL for 2h. ROS formation was detected by chemiluminescence (CL) using the Diogenes reagent. OxLDL induced ROS formation in human endothelial cells (171+/-12%; n=10, P<0.05 vs. control). This augmented ROS formation in response to oxLDL was completely inhibited by the Nox inhibitor VAS2870 (101+/-9%; n=7, P<0.05 vs. oxLDL). Similar results were obtained with superoxide dismutase (91+/-7%; n=7, P<0.05 vs. oxLDL). However, the Nox4 mRNA expression level was neither changed by oxLDL nor VAS2870. We conclude that VAS2870 could provide a novel strategy to inhibit the augmented endothelial superoxide anion formation in response to cardiovascular risk factors.  相似文献   

2.
The in vitro production of mammalian embryos suffers from high frequencies of developmental failure due to excessive levels of permanent embryo arrest and apoptosis caused by oxidative stress. The p66Shc stress adaptor protein controls oxidative stress response of somatic cells by regulating intracellular ROS levels through multiple pathways, including mitochondrial ROS generation and the repression of antioxidant gene expression. We have previously demonstrated a strong relationship with elevated p66Shc levels, reduced antioxidant levels and greater intracellular ROS generation with the high incidence of permanent cell cycle arrest of 2–4 cell embryos cultured under high oxygen tensions or after oxidant treatment. The main objective of this study was to establish a functional role for p66Shc in regulating the oxidative stress response during early embryo development. Using RNA interference in bovine zygotes we show that p66Shc knockdown embryos exhibited increased MnSOD levels, reduced intracellular ROS and DNA damage that resulted in a greater propensity for development to the blastocyst stage. P66Shc knockdown embryos were stress resistant exhibiting significantly reduced intracellular ROS levels, DNA damage, permanent 2–4 cell embryo arrest and diminished apoptosis frequencies after oxidant treatment. The results of this study demonstrate that p66Shc controls the oxidative stress response in early mammalian embryos. Small molecule inhibition of p66Shc may be a viable clinical therapy to increase the developmental potential of in vitro produced mammalian embryos.  相似文献   

3.
Growth factor receptors induce a transient increase in reactive oxygen species (ROS) levels upon receptor binding to promote signaling through oxidation of protein tyrosine phosphatases (PTPs). Most studies have focused on NADPH oxidases as the dominant source of ROS to induce PTP oxidation. A potential additional regulator of growth factor-induced PTP oxidation is p66Shc, which stimulates mitochondrial ROS production. This study explores the contribution of p66Shc-induced ROS to PTP oxidation and growth factor receptor-induced signaling and migration through analyses of p66Shc-KO fibroblasts and cells with siRNA-mediated p66Shc downregulation. Analyses of PDGFβR phosphorylation in two independent cell systems demonstrated a decrease in PDGFβR phosphorylation after p66Shc deletion or downregulation, which occurred in a partially site-selective and antioxidant-sensitive manner. Deletion of p66Shc also reduced PDGF-induced activation of downstream signaling of Erk, Akt, PLCγ-1, and FAK. Importantly, reduced levels of p66Shc led to decreased oxidation of DEP1, PTP1B, and SHP2 after PDGF stimulation. The cell biological relevance of these findings was indicated by demonstration of a significantly reduced migratory response in PDGF-stimulated p66Shc-KO fibroblasts, consistent with reduced PDGFβR-Y1021 and PLCγ-1 phosphorylation. Downregulation of p66Shc also reduced EGFR phosphorylation and signaling, indicating that the positive role of p66Shc in receptor tyrosine kinase signaling is potentially general. Moreover, downregulation of the mitochondrial hydrogen peroxide scavenger peroxiredoxin 3 increased PDGFβR phosphorylation, showing that mitochondrial ROS in general promote PDGFβR signaling. This study thus identifies a previously unrecognized role for p66Shc in the regulation of PTP oxidation controlling growth factor-induced signaling and migration. In more general terms, the study indicates a regulatory role for mitochondrial-derived ROS in the control of PTP oxidation influencing growth factor signaling.  相似文献   

4.
The aim of this study was to evaluate melatonin cytotoxicity by measuring its effects on various cellular targets. Cell viability, intracellular reduced glutathione (GSH) level, and reactive oxygen species (ROS) production were assessed in the human liver cell line (HepG2), after incubation with increasing melatonin concentrations (0.1-10,000 microM). The incubation times tested were 24, 72, and 96 h for cell viability and intracellular GSH level, and 15 and 45 minutes for ROS production. Cellular target evaluations were possible in living cells by means of a new microplate cytofluorimeter. This technology was suitable for the assessment of cell viability, GSH level, and ROS overproduction with, respectively, neutral red, monochlorobimane (mBCl), and 2',7'-dichlorofluorescin diacetate (DCFH-DA) fluorescent probes. At the lowest melatonin concentrations (0.1-10 microM) and for a relatively short incubation time (24 h), the antioxidant effect of melatonin was revealed by an increased intracellular GSH level, associated to cell viability improvement. In contrast, after longer incubation (96 h), cell viability significantly decreased with these lowest melatonin concentrations (0.1-10 microM). Moreover, high melatonin concentrations (1,000-10,000 microM) induced GSH depletion. This oxidative stress is associated with ROS overproduction from 10 microM after only 15 minutes of incubation. This dual effect is strong evidence that, in vitro, melatonin can be both antioxidant and prooxidant on the human liver cell line, depending on the concentration and incubation time.  相似文献   

5.
Koo OJ  Jang G  Kwon DK  Kang JT  Kwon OS  Park HJ  Kang SK  Lee BC 《Theriogenology》2008,70(7):1111-1118
The objectives were to determine factors affecting generation of reactive oxygen species (ROS) in porcine embryos after electrical activation of oocytes, and the effects of an antioxidant and chemical agent on ROS generation. Greater ROS were induced by electrical activation compared to IVF (mean+/-S.E.M., 14.6+/-0.8 vs. 9.2+/-0.4, P<0.05). Furthermore, ROS generation in embryos after electrical activation was significantly increased by higher intensity and longer duration electrical pulses and by higher exogenous Ca(2+) concentrations. Cleavage rate and blastocyst formation rate were not directly related to the level of ROS. Supplementation of the IVC medium with 0.5mM glutathione (GSH) reduced ROS (9.2+/-0.4 vs. 14.7+/-0.9, P<0.05). Treatment with the chemical activation agent, 6-dimethylaminopurine (6-DMAP) for 3h did not induce further ROS generation in combination with electrical activation, but it improved blastocyst formation rate (53.8+/-1.1 vs. 23.7+/-3.5, P<0.05). We concluded that generation of ROS should be considered for optimizing electrical activation and that supplementing an antioxidant or combining electrical and chemical activation induced lower ROS generation in electrically activated porcine embryos.  相似文献   

6.
p66Shc, a redox enzyme that enhances reactive oxygen species (ROS) production by mitochondria, promotes T cell apoptosis. We have addressed the mechanisms regulating p66Shc-dependent apoptosis in T cells exposed to supraphysiological increases in [Ca2+]c. p66Shc expression resulted in profound mitochondrial dysfunction in response to the Ca2+ ionophore A23187, as revealed by dissipation of mitochondrial transmembrane potential, cytochrome c release and decreased ATP levels. p66Shc expression also caused a dramatic alteration in the cells' Ca2+-handling ability, which resulted in Ca2+ overload after A23187 treatment. The impairment in Ca2+ homeostasis was ROS dependent and caused by defective Ca2+ extrusion due at least in part to decreased plasma membrane ATPase (PMCA) expression. Both effects of p66Shc required Ca2+-dependent serine-36 phosphorylation. The mitochondrial effects of p66Shc were potentiated by but not strictly dependent on the rise in [Ca2+]c. Thus, Ca2+-dependent p66Shc phosphorylation causes both mitochondrial dysfunction and impaired Ca2+ homeostasis, which synergize in promoting T cell apoptosis.  相似文献   

7.
Oxidised low density lipoprotein (oxLDL) is thought to be a significant contributor to the death of macrophage cells observed in advanced atherosclerotic plaques. Using human-derived U937 cells we have examined the effect of cytotoxic oxLDL on oxidative stress and cellular catabolism.Within 3 h of the addition of oxLDL, there was a rapid, concentration dependent rise in cellular reactive oxygen species followed by the loss of cellular GSH, and the enzyme activity of both glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and aconitase. The loss of these catabolic enzymes was accompanied by the loss of cellular ATP and lower lactate generation. Addition of the macrophage antioxidant 7,8-dihydroneopterin inhibited the ROS generation, glutathione loss and catabolic inactivation. NOX was shown to be activated by oxLDL addition while apocynin inhibited the loss of GSH and cell viability. The data suggests that oxLDL triggers an excess of ROS production through NOX activation, and catabolic failure through thiol oxidation resulting in cell death.  相似文献   

8.
Humans are exposed to dietary acrylamide (AA) during their lifetime; it is therefore necessary to investigate the mechanisms associated with AA induced toxic effects. Accumulating evidence indicates that oxidative stress may contribute to AA cytotoxicity, but the link between oxidative stress and AA cytotoxicity in the gastrointestinal tract, the primary organ in contact with dietary AA, has not been described. In this study, we evaluate the alterations of the redox balance induced by AA in Caco-2 intestinal cells as well as the potential protective role of natural antioxidants such as a well-standardized cocoa polyphenolic extract (CPE) and its main polyphenol components epicatechin (EC) and procyanidin B2 (PB2). We found that AA-induced oxidative stress in Caco-2 cells is evidenced by glutathione (GSH) depletion and reactive oxygen species (ROS) overproduction. AA also activated the extracellular-regulated kinases and the c-Jun N-amino terminal kinases (JNKs) leading to an increase in caspase-3 activity and cell death. Studies with appropriate inhibitors confirmed the implication of oxidative stress and JNKs activation in AA-induced apoptosis. Additionally, AA cytotoxicity was counteracted by CPE or PB2 by inhibiting GSH consumption and ROS generation, increasing the levels of gamma-glutamyl cysteine synthase and glutathione-S-transferase and blocking the apoptotic pathways activated by AA. Therefore, AA-induced cytotoxicity and apoptosis are closely related to oxidative stress in Caco-2 cells. Interestingly, natural dietary antioxidant such as PB2 and CPE were able to suppress AA toxicity by improving the redox status of Caco-2 cells and by blocking the apoptotic pathway activated by AA.  相似文献   

9.
Antioxidants as novel therapy in a murine model of colitis   总被引:5,自引:0,他引:5  
Reactive oxygen species (ROS) are increased in inflammatory bowel disease (IBD) and have been implicated as mediators of intestinal inflammation. We investigated the hypothesis that antioxidants with diverse properties attenuate disease progression in a murine dextran sodium sulfate (DSS)-induced colitis model. These antioxidants were (A) S-adenosylmethionine, a glutathione (GSH) precursor; (B) green tea polyphenols, a well-known antioxidant; and (C) 2(R,S)-n-propylthiazolidine-4(R)-carboxylic acid (PTCA), a cysteine prodrug, involved in GSH biosynthesis. BALB/c mice were divided into four groups and provided with the above mentioned antioxidants or the vehicle incorporated into chow. The animals were further divided into two subgroups and given normal drinking water (control) or water supplemented with DSS (to induce colitis), and the progression of the disease was studied. DSS-treated mice developed severe colitis as shown by bloody diarrhea, weight loss and pathological involvement (P<.001). However, all the antioxidants significantly improved diarrhea and colon lesions (P<.01), and increased body weights (P<.05). Hematocrits were significantly less affected in DSS-treated animals receiving antioxidants (P<.01). Colon lengths were significantly decreased due to mucosal inflammation in DSS-treated animals, but antioxidant therapy normalized this pathological finding (P<.001). The blood level of reduced GSH was decreased in DSS-treated mice (P<.05) and returned to normal when treated with antioxidants. Serum amyloid A (acute phase protein; P=.0015) and tumor necrosis factor-alpha (TNF-alpha; pro-inflammatory cytokine; P<.01) were significantly increased in DSS-treated animals (161+/-40 pg/ml) and improved with antioxidant treatment (P<.01). Finally, actin cytoskeleton was distorted and fragmented in the mucosa of DSS-treated mice and improved with antioxidant therapy. In conclusion, three structurally dissimilar antioxidants provided protection against DSS-induced colitis in this murine model, supporting a possible role for antioxidant therapy in IBD patients.  相似文献   

10.
Reactive oxygen species (ROS) and insulin signaling in the adipose tissue are critical determinants of aging and age-associated diseases. It is not clear, however, if they represent independent factors or they are mechanistically linked. We investigated the effects of ROS on insulin signaling using as model system the p66(Shc)-null mice. p66(Shc) is a redox enzyme that generates mitochondrial ROS and promotes aging in mammals. We report that insulin activates the redox enzyme activity of p66(Shc) specifically in adipocytes and that p66(Shc)-generated ROS regulate insulin signaling through multiple mechanisms, including AKT phosphorylation, Foxo localization, and regulation of selected insulin target genes. Deletion of p66(Shc) resulted in increased mitochondrial uncoupling and reduced triglyceride accumulation in adipocytes and in vivo increased metabolic rate and decreased fat mass and resistance to diet-induced obesity. In addition, p66(Shc-/-) mice showed impaired thermo-insulation. These findings demonstrate that p66(Shc)-generated ROS regulate the effect of insulin on the energetic metabolism in mice and suggest that intracellular oxidative stress might accelerate aging by favoring fat deposition and fat-related disorders.  相似文献   

11.

This study investigated the effect of a high-fat diet rich in corn oil (CO-HFD) on the memory retention and hippocampal oxidative stress, inflammation, and apoptosis in rats, and examined if the underlying mechanisms involve modulating Resolvin D1 (RvD1) levels and activation of p66Shc. Also, we tested if co-administration of RvD1 could prevent these neural adverse effects induced by CO-HFD. Adult male Wistar rats were divided into 4 groups (n?=?18/each) as control fed standard diet (STD) (3.82 kcal/g), STD?+?RvD1 (0.2 µg/Kg, i.p/twice/week), CO-HFD (5.4 kcal/g), and CO-HFD?+?RvD1. All treatments were conducted for 8 weeks. With normal fasting glucose levels, CO-HFD induced hyperlipidemia, hyperinsulinemia, increased HOMA-IRI and reduced the rats’ memory retention. In parallel, CO-HFD increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), cytoplasmic cytochrome-c, and cleaved caspase-3 and significantly decreased levels of glutathione (GSH), Bcl-2, and manganese superoxide dismutase (MnSOD) in rats’ hippocampi. Besides, CO-HFD significantly reduced hippocampal levels of docosahexaenoic acid (DHA) and RvD1, as well as total protein levels of Nrf2 and significantly increased nuclear protein levels of p-NF-κB. Concomitantly, CO-HFD increased hippocampal protein levels of p-JNK, p53, p66Shc, p-p66Shc, and NADPH oxidase. However, without altering plasma and serum levels of glucose, insulin, and lipids, co-administration of RvD1 to CO-HFD completely reversed all these events. It also resulted in similar effects in the STD fed-rats. In conclusion, CO-HFD impairs memory function and induces hippocampal damage by reducing levels of RvD1 and activation of JNK/p53/p66Shc/NADPH oxidase, effects that are prevented by co-administration of RvD1.

  相似文献   

12.
Oxidized LDL (oxLDL) produced a rapid depletion of intracellular glutathione (GSH) followed by an adaptive increase in J774 A.1 macrophages. OxLDL also induced a transient increase in the levels of gamma-glutamylcysteine synthetase heavy subunit (gamma-GCS-HS), representing the catalytic subunit of the rate-limiting enzyme for de novo GSH synthesis. The induction took place within 3 h, with maximum levels observed by 10 h of treatment. Pretreatment of oxLDL with ebselen inhibited GSH depletion and attenuated the gamma-GCS-HS induction. OxLDL-associated lipid hydroperoxides and their decomposition product aldehydes are two major components thought to account for GSH depletion in macrophages. Ebselen pretreatment had only a minor effect on malondialdehyde levels, whereas peroxide content was essentially abolished, suggesting that oxLDL-associated hydroperoxides may mediate both GSH depletion and gamma-GCS-HS induction. Acetylated LDL (AcLDL) also caused a moderate induction of gamma-GCS-HS protein along with a 30% transient increase in GSH by 3;-6 h, suggesting a minor involvement of scavenger receptor-mediated signaling of GSH synthesis. However, the level of gamma-GCS induction by AcLDL was insufficient to cause a sustained increase in GSH. Macrophages with higher glutathione peroxidase (GPx) activity experienced a more rapid and extensive depletion of GSH when treated with oxLDL under similar conditions, along with greater resistance to oxLDL- or peroxide-induced cytotoxicity. We conclude that oxLDL-associated peroxides are primarily responsible for GSH depletion, creating an oxidizing environment required for gamma-GCS induction and compensatory GSH synthesis. This is facilitated in cells expressing high GPx activity through a rapid depletion of GSH in the face of a peroxide challenge.  相似文献   

13.

Introduction

Niacin reduces vascular oxidative stress and down regulates inducible nitric oxide synthase, an enzyme mediating proatherosclerotic effects in part by increasing oxidative stress. Here, we evaluate whether Niacin reverses the redox sensitive migratory arrest of macrophages in response to oxidised(ox) LDL uptake.

Material and Methods

Migration of RAW264.7 cells, a murine macrophage cell line and bone marrow derived macrophages from wildtype and iNOS knockout mice was quantified using a modified Boyden chamber. Unstimulated cells or cells preincubated with oxLDL or non-oxidised (n)LDL were treated with Nicotinic acid or Nicotinamide. Nitric oxide, peroxynitrite and ROS production were assessed using electron paramagnetic resonance (ESR). Additionally, flow cytometry analysis of apoptosis, fokal adhesion kinase (FAK), phalloidin, CD36, F4/80 macrophage marker and iNOS gene expression (PCR) were assessed.

Results

Migration of Nicotinic acid, Nicotinamide treated cells or unstimulated cells did not differ (P>0.05). oxLDL treatment significantly reduced migration vs. unstimulated cells (p<0.05). In contrast, migratory arrest in response to oxLDL treatment was reversed by co-incubation with Nicotinic acid and Nicotinamide. The oxLDL-induced peroxynitrite formation in RAW264.7 cells was abolished by Niacin and glutathion (GSH) oxidation was significantly reduced. However, nitric oxide (NO)- and reactive oxygen species (ROS) production induced by oxLDL were not affected by Niacin treatment of RAW264.7 cells. In addition, Nicotinic acid and Nicotinamide reduced actin polymerization, a marker for migratory arrest.

Discussion

Our data shows that oxLDL induced inhibition of macrophage migration in vitro can be reversed by Niacin. Furthermore, Niacin reduces peroxynitite formation and improves antioxidant GSH.  相似文献   

14.
Steroid hormones exhibit diverse biological activities. Despite intensive studies on steroid function at the genomic level, their nongenomic actions remain an enigma. In this study, we investigated the role of reactive oxygen species (ROS) in androgen-stimulated prostate cancer (PCa) cell proliferation. In androgen-treated PCa cells, increased cell growth and ROS production correlated with elevated p66Shc protein, an authentic oxidase. This growth stimulation was blocked by antioxidants. Further, elevated expression of p66Shc protein by cDNA transfection encoding wild-type protein, but not a redox-deficient (W134F) mutant, was associated with increased PCa cell proliferation. Conversely, knockdown of p66Shc expression by shRNA resulted in diminished cell growth. Increased p66Shc expression in PCa cells enhanced their tumorigenicity in xenograft animals. Importantly, p66Shc protein level is higher in clinical prostate adenocarcinomas than in adjacent noncancerous cells. Expression of redox-deficient p66Shc mutant protein abolished androgen-stimulated cell growth. In androgen-treated, H(2)O(2)-treated, and p66Shc cDNA-transfected PCa cells, cellular prostatic acid phosphatase, an authentic tyrosine phosphatase, was inactivated by reversible oxidation; subsequently, ErbB-2 was activated by phosphorylation at tyrosine-1221/1222. These results together support the notion that androgens induce ROS production through the elevation of p66Shc protein, which inactivates tyrosine phosphatase activity for the activation of interacting tyrosine kinase, leading to increased cell proliferation and enhanced tumorigenicity. Our results thus suggest that p66Shc protein functions at the critical junction point between androgens and tyrosine phosphorylation signaling in human PCa cells.  相似文献   

15.
Quercetin (QT), a dietary‐derived flavonoid, is ubiquitous in fruits and vegetables and plays an important role in human health by virtue of its antioxidant function. The present study was designed to examine the effects of QT on oxidative damage that was induced by the herbicide, atrazine (ATZ), in mixed cultures of Sertoli‐germ cells. Results showed that treatment with QT increased cell viability and decreased catalase activity, malondialdehyde, and reactive oxygen species (ROS) levels. QT treatment also increased the mRNA expression of glutathione peroxidase (GSH‐Px), glutathione reductase (GR), glutathione‐S‐transferase, and superoxide dismutase‐1 and could not reversed to the control levels ATZ‐induced steady‐state mRNA levels of these antioxidant genes as well as the level of glutathione and activities of GSH‐Px and GR. QT has protective effect against ATZ‐induced oxidative stress through a reduction in ROS levels and lipid peroxidation. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:477‐485, 2012; View this article online at wileyonlinelibrary.com . DOI 10:1002/jbt.21449  相似文献   

16.
The primary objective of this study was to determine the sequence of biochemical signaling events that occur after modulation of the cellular redox state in the B cell lymphoma line, PW, with emphasis on the role of mitochondrial signaling. L-Buthionine sulphoximine (BSO), which inhibits gamma glutamyl cysteine synthetase (gammaGCS), was used to modulate the cellular redox status. The sequence and role of mitochondrial events and downstream apoptotic signals and mediators was studied. After BSO treatment, there was an early decline in cellular glutathione (GSH), followed by an increase in reactive oxygen species (ROS) production, which induced a variety of apoptotic signals (detectable at different time points) in the absence of any external apoptotic stimuli. The sequence of biochemical events accompanying apoptosis included a 95% decrease in total GSH and a partial (25%) preservation of mitochondrial GSH, without a significant increase in ROS production at 24h. Early activation and nuclear translocation of the nuclear factor kappa B subunit Rel A was observed at approximately 3h after BSO treatment. Cytochrome c release into the cytosol was also seen after 24h of BSO treatment. p53 protein expression was unchanged after redox modulation for up to 72 h, and p21waf1 independent loss of cellular proliferation was observed. Surprisingly, a truncated form of p53 was expressed in a time-dependent manner, beginning at 24h after BSO incubation. Irreversible commitment to apoptosis occurred between 48 and 72 h after BSO treatment when mitochondrial GSH was depleted, and there was an increase in ROS production. Procaspase 3 protein levels showed a time-dependent reduction following incubation with BSO, notably after 48 h, that corresponded with increasing ROS levels. At 96 h, caspase 3 cleavage products were detectable. The pan-caspase inhibitor zVADfmk, partially blocked the induction of apoptosis at 48 h, and was ineffective after 72 h. PW cells could be rescued from apoptosis by removing them from BSO after up to 48, but not 72 h incubation with BSO. Mitochondrial transmembrane potential (DeltaPsi(m)) remained intact in most of the cells during the 72 h observation period, indicating that DeltaPsi(m) dissipation is not an early signal for the induction of redox dependent apoptosis in PW cells. These data suggest that a decrease in GSH alone can act as a potent early activator of apoptotic signaling. Increased ROS production following mitochondrial GSH depletion, represents a crucial event, which irreversibly commits PW cells to apoptosis.  相似文献   

17.
18.
The glutathione (GSH)-dependent antioxidant system has been demonstrated to inhibit atherosclerosis. Macrophage CD36 uptakes oxidized low density lipoprotein (oxLDL) thereby facilitating foam cell formation and development of atherosclerosis. It remains unknown if GSH can influence macrophage CD36 expression and cellular oxLDL uptake directly. Herein we report that treatment of macrophages with l-buthionine-S,R-sulfoximine (BSO) decreased cellular GSH production and ratios of GSH to glutathione disulfide (GSH/GSSG) while increasing production of reactive oxygen species. Associated with decreased GSH levels, macrophage CD36 expression was increased, which resulted in enhanced cellular oxLDL uptake. In contrast, N-acetyl cysteine and antioxidant enzyme (catalase or superoxide dismutase) blocked BSO-induced CD36 expression as well as oxLDL uptake. In vivo, administration of mice with BSO increased CD36 expression in peritoneal macrophages and kidneys. BSO had no effect on CD36 mRNA expression and promoter activity but still induced CD36 protein expression in macrophages lacking peroxisome proliferator-activated receptor γ expression, suggesting it induced CD36 expression at the translational level. Indeed, we determined that BSO enhanced CD36 translational efficiency. Taken together, our study demonstrates that cellular GSH levels and GSH/GSSG status can regulate macrophage CD36 expression and cellular oxLDL uptake and demonstrate an important anti-atherogenic function of the GSH-dependent antioxidant system by providing a novel molecular mechanism.  相似文献   

19.
20.
Previous studies, conducted on experimental animals, have indicated that reactive oxygen species (ROS) are involved in the aging process. The objective of this work was to study the relationship between oxidative damage and human skeletal muscle aging, measuring the activity of the main antioxidant enzymes superoxide dismutase (total and MnSOD), glutathione peroxidase (GPx) and catalase in the skeletal muscle of men and women in the age groups: young (17-40 years), adult (41-65 years) and aged (66-91 years). We also measured glutathione and glutathione disulfide (GSH and GSSG) levels and the redox index; lipid peroxidation and protein carbonyl content. Total SOD activity was lower in the 66-91 year-old vs. the 17-40 year-old men; MnSOD activity was significantly greater in 66-91 year-old vs. 17-40 year-old women. GPx activity remained unchanged. The activity of catalase was lower in adults than in young men but higher in the aged. We observed no changes in GSH levels and significantly higher GSSG levels only in aged men vs. adult men, and a significant decrease in aged women vs. aged men. The protein carbonyl content increased significantly in the 41-65 and 66-91 year-old vs. the 17-40 year-old men. Finally, young women have lower lipid peroxidation levels than young men. Significantly higher lipid peroxidation levels were observed in aged men vs. both young and adult men, and the same trend was noticed for women. We conclude that oxidative damage may play a crucial role in the decline of functional activity in human skeletal muscle with normal aging in both sexes; and that men appear to be more subject to oxidative stress than women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号