首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzyme additives are believed to improve septic tank performance by increasing the hydrolysis and digestion rates and maintaining a healthy microbial population. Previous studies reported mixed results on the effectiveness of enzymes on mesophilic and thermophilic digestion, and it is not clear whether enzymes would be effective under septic tank conditions where there is no heating or mixing, quantities of enzymes added are small, and they can be washed out quickly. In this study, batch reactors and continuous-flow reactors designed and operated as septic tanks were used to evaluate whether enzymatic treatment would increase the hydrolysis and digestion rates in primary sludge. Total solids, volatile solids, total suspended solids, total and soluble chemical oxygen demand, concentrations of protein, carbohydrate, ammonia and volatile acids in sludge and effluent samples were measured to determine the differences in digestion rates in the presence and absence of enzymes. Overall, no significant improvement was observed in enzyme-treated reactors compared with the control reactors.  相似文献   

2.
During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludge continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q(r)/Q(s) ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q(r)/Q(s) ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.  相似文献   

3.
Boron adsorption onto activated sludge was investigated using bench-scale reactors under simulated wastewater treatment conditions. Two experiments, continuous flow and batch, were performed. Boron concentrations were determined by means of inductively coupled plasma mass spectrometry. The results of the continuous-flow experiment indicated that a small amount of boron accumulated on the activated sludge and its concentration in the sludge depended on the nature of the biota in the sludge. Freundlich and Langmuir isotherm plots generated using the data from the batch experiment indicated that boron was adsorbed onto rather than absorbed into the sludge. The Freundlich constants, k and 1/n, were determined to be 26 mg/kg and 0.87. These values indicate that activated sludge has a limited capacity for boron adsorption and thus utilization of the excess sludge for farmland may not be toxic to plant at least boron concern.  相似文献   

4.
Amplified ribosomal DNA restriction analysis (ARDRA) is a simple method based on restriction endonuclease digestion of the amplified bacterial 16S rDNA. In this study we have evaluated the suitability of this method to detect differences in activated sludge bacterial communities fed on domestic or industrial wastewater, and subject to different operational conditions. The ability of ARDRA to detect these differences has been tested in modified Ludzack-Ettinger (MLE) configurations. Samples from three activated sludge wastewater treatment plants (WWTPs) with the MLE configuration were collected for both oxic and anoxic reactors, and ARDRA patterns using double enzyme digestions AluI+MspI were obtained. A matrix of Dice similarity coefficients was calculated and used to compare these restriction patterns. Differences in the community structure due to influent characteristics and temperature could be observed, but not between the oxic and anoxic reactors of each of the three MLE configurations. Other possible applications of ARDRA for detecting and monitoring changes in activated sludge systems are also discussed.  相似文献   

5.
The study investigated methane production from dehydrated waste-activated sludge (DWAS) with approximately 80% water content under thermophilic conditions. The repeated batch-wise treatment of DWAS using methanogenic sludge unacclimated to high concentrations of ammonia, increased the ammonia production up to 7,600 mg N per kilogram total wet sludge of total ammonia concentration, and stopped the methane production. Investigation revealed that the loading ratio of DWAS for methanogenic sludge influences anaerobic digestion. Methane production significantly decreased and ammonia concentration increased with the increase in loading ratio of DWAS. Since the semicontinuous culture revealed that approximately 50% of organic nitrogen in DWAS converted to ammonia at sludge retention time (SRT) after 4 days at 37 degrees C and 1.33 days at 55 degrees C, the previous stripping of the ammonia produced from DWAS was carried out. The stripping of ammonia increased methane production significantly. This ammonia-methane two-stage anaerobic digestion demonstrated a successful methane production at SRT 20 days in the semicontinuous operation using a laboratory-scale reactor system.  相似文献   

6.
Waste water, derived from the reprocessing of used emulsions or suspensions, contains high concentrations of emulsified mineral oil and stabilizers, as well as different additives that are needed during the treatment process. Two stirred-tank reactors and two fixed-bed reactors were used to study the biodegradation of these waste-water compounds during two-stage biological treatment. The waste water was first proceesed in an activated sludge reactor to remove easily biodegradable substances. The effluent from the first stage was treated in three parallel operating reactors: an activated sludge tank containing different amounts of powdered activated carbon (PAC, between 0 and 2%), an upflow anaerobic fixed-bed reactor and an aerobic fixed-bed reactor (trickling filter). The results from the continuous treatment were compared with laboratory batch experiments. About 60% of the influent TOC was reduced by the first activated sludge treatment. The removal efficiency increased to about 70% by using a second activated sludge stage. This degradation was comparable to the maximum degree of degradation measured in laboratory batch experiments. PAC addition to the second activated sludge tank resulted in increased degradation rates. The removal efficiency increased to about 76% when 0.1% PAC was added and to 96% with 1% PAC. The removal efficiency decreased to 84% when the proportion of PAC was further increased to 2%. Variations in the amount of PAC addition per unit influent volume in the range of 50 and 200 mg/l had no significant effect on the TOC removal. Degradation models based on the MONOD-type equation were found to be in close correlation with the results obtained from batch experiments. However, the biological removal rates measured in batch experiments did not reflect the removal capacity determined in continuous operating treatment systems.  相似文献   

7.
Poor long-term stability of aerobic granules developed in sequencing batch reactors (SBRs) remains a limitation to widespread use of aerobic granulation in treating wastewater. Filamentous growth has been commonly reported in aerobic granular sludge SBR. This review attempts to address the instability problem of aerobic granular sludge SBR from the perspective of filamentous growth in the system. The possible causes of filamentous growth are identified, including long retention times of solids, low substrate concentration in the liquid phase, high substrate gradient within the granule, dissolved oxygen deficiency in the granule, nutrient deficiency inside granule, temperature shift and flow patterns. Because of cyclic operation of aerobic granular sludge SBR and peculiarities of aerobic granules, various stresses can be present simultaneously and can result in progressive development of filamentous growth in aerobic granular sludge SBR. Overgrowth of filamentous bacteria under stress conditions appears to be a major cause of instability of aerobic granular sludge SBR. Specific recommendations are made for controlling filamentous growth.  相似文献   

8.
Multivalent cations have been known to be important components of activated sludge floc structure due to their bridging ability of the negatively charged sites on the biopolymer network. Recently in batch systems it was found that excess concentration of monovalent cations led to the deterioration in settleability, dewaterability of sludges and effluent quality of the system. In this study, effect of influent monovalent cations (potassium and sodium) on activated sludge floc structure was investigated in semi-continuous reactors. Results revealed that the increase in concentration of both ions correlated to the general increase in total EPS concentration. The zeta potential values were affected by the cation type and dose in such a way that sludge from sodium reactors had always higher zeta potential values (higher negative charge) than the sludges from potassium reactors. Flocs from sodium reactors were more fragile and weak and the capillary suction time values of these sludges were higher compared to those from potassium reactors. The findings of this research conclude that the floc structure is significantly weakened with the increase of monovalent cations. Even though EPS is produced, it is unable to bind the floc components together. With this, the physical properties of sludge deteriorate for both cations.  相似文献   

9.
A strain identified as Comamonas testosteroni I2 was isolated from activated sludge and found to be able to mineralize 3-chloroaniline (3-CA). During the mineralization, a yellow intermediate accumulated temporarily, due to the distal meta-cleavage of chlorocatechol. This strain was tested for its ability to clean wastewater containing 3-CA upon inoculation into activated sludge. To monitor its survival, the strain was chromosomally marked with the gfp gene and designated I2gfp. After inoculation into a lab-scale semicontinuous activated-sludge (SCAS) system, the inoculated strain maintained itself in the sludge for at least 45 days and was present in the sludge flocs. After an initial adaptation period of 6 days, complete degradation of 3-CA was obtained during 2 weeks, while no degradation at all occurred in the noninoculated control reactor. Upon further operation of the SCAS system, only 50% 3-CA removal was observed. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes revealed a dynamic change in the microbial community structure of the activated sludge. The DGGE patterns of the noninoculated and the inoculated reactors evolved after 7 days to different clusters, which suggests an effect of strain inoculation on the microbial community structure. The results indicate that bioaugmentation, even with a strain originating from that ecosystem and able to effectively grow on a selective substrate, is not permanent and will probably require regular resupplementation.  相似文献   

10.
The anaerobic digestion of glycerol derived from biodiesel manufacturing, in which COD was found to be 1010 g/kg, was studied in batch laboratory-scale reactors at mesophilic temperature using granular and non-granular sludge. Due to the high KOH concentration of this by-product, H3PO4 was added to recover this alkaline catalyst as agricultural fertilizer (potassium phosphates). Although it would not be economically viable, a volume of glycerol was distilled and utilised as reference substrate. The anaerobic revalorisation of glycerol using granular sludge achieved a biodegradability of around 100%, while the methane yield coefficient was 0.306 m3 CH4/kg acidified glycerol. Anaerobic digestion could be a good option for revalorising this available, impure and low priced by-product derived from the surplus of biodiesel companies. The organic loading rate studied was 0.21–0.38 g COD/g VSS d, although an inhibition phenomenon was observed at the highest load.  相似文献   

11.
Variations in microbial activity during the aerobic digestion of sludge generated at wastewater treatment plants were studied. Results obtained by the measurement of enzymatic activity and microbiological parameters were compared with those determined by traditional methods (COD, suspended solids, etc.). Their variation with digestion time was monitored for batch digestion over a period of 135 days. The relationship between these measurements and control parameters of the sludge was also investigated. It was found that the traditional physicochemical and microbiological parameters present a series of problems which detract from their usefulness. The enzymatic parameters dehydrogenase activity (primary metabolism) and esterase activity (secondary metabolism) are better able to characterise the process, and the ratio of these two variables may be used to estimate the degree of endogenesis and, consequently, the degree of stability of the aerobic sludge digestion. In addition, these techniques are swift and simple to employ.  相似文献   

12.
Aims: Single‐walled carbon nanotubes (SWNTs) are likely to become increasingly widespread and yet their environmental impact is not well understood. The purpose of the current study was to evaluate the impact of SWNTs on microbial communities in a ‘sentinel’ environmental system, activated sludge batch‐scale reactors. Methods and Results: Triplicate batch reactors were exposed to SWNTs and compared to control reactors exposed to impurities associated with SWNTs. Automated ribosomal intergenic spacer analysis (ARISA) was used to assess bacterial community structure in each reactor. SWNT exposure was found to impact microbial community structure, while SWNT‐associated impurities had no effect, compared to controls. 16S rRNA gene sequence analysis indicated that dominant phylotypes detected by ARISA included members of the families Sphingomonadaceae and Cytophagacaceae and the genus Zoogloea. ARISA results indicated an adverse impact of SWNTs on the sphingomonad relative to other community members. Changes in community structure also occurred in both SWNT‐exposed and control reactors over the experimental time period and with the date on which activated sludge was obtained from a wastewater treatment facility. Conclusions: These results indicate that SWNTs differentially impact members of the activated sludge reactor bacterial community. Significance and Impact of the Study: The finding that community structure was affected by SWNTs indicates that this emerging contaminant differentially impacted members of the activated sludge bacterial community and raises the concern that SWNTs may also affect the services it provides.  相似文献   

13.
A strain identified as Comamonas testosteroni I2 was isolated from activated sludge and found to be able to mineralize 3-chloroaniline (3-CA). During the mineralization, a yellow intermediate accumulated temporarily, due to the distal meta-cleavage of chlorocatechol. This strain was tested for its ability to clean wastewater containing 3-CA upon inoculation into activated sludge. To monitor its survival, the strain was chromosomally marked with the gfp gene and designated I2gfp. After inoculation into a lab-scale semicontinuous activated-sludge (SCAS) system, the inoculated strain maintained itself in the sludge for at least 45 days and was present in the sludge flocs. After an initial adaptation period of 6 days, complete degradation of 3-CA was obtained during 2 weeks, while no degradation at all occurred in the noninoculated control reactor. Upon further operation of the SCAS system, only 50% 3-CA removal was observed. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes revealed a dynamic change in the microbial community structure of the activated sludge. The DGGE patterns of the noninoculated and the inoculated reactors evolved after 7 days to different clusters, which suggests an effect of strain inoculation on the microbial community structure. The results indicate that bioaugmentation, even with a strain originating from that ecosystem and able to effectively grow on a selective substrate, is not permanent and will probably require regular resupplementation.  相似文献   

14.
Solutions of sodium caprate and sodium laurate were digested in upflow anaerobic sludge bed (UASB) reactors inoculated with granular sludge and in expanded granular sludge bed (EGSB) reactors. UASB reactors are unsuitable if lipids contribute 50% or more to the COD of waste water: the gas production rate required to obtain sufficient mixing and contact cannot be achieved. At lipid loading rates exceeding 2–3 kg COD m−3 day−1, total sludge wash-out occurred. At lower loading rates the system was unreliable, due to unpredictable sludge flotation. EGSB reactors do fulfil the requirements of mixing and contact. They accommodate space loading rates up to 30 kg COD m−3 day−1 during digestion of caprate or laurate as sole substrate, at COD removal efficiencies of 83–91%, and can be operated at hydraulic residence times of 2 h without any problems. Augmentation of granular sludge in lab-scale EGSB reactors was demonstrated. The new granules had excellent settling properties. Floating layer formation, as well as mixing characteristics in full-scale EGSB reactors require further research.  相似文献   

15.
The kinetics of anaerobic treatment of slaughterhouse wastewater in batch and upflow anaerobic sludge blanket (UASB) reactors was investigated. Different concentrations of organic matter in slaughterhouse wastewater did not change the first order kinetics of the reaction. In batch digesters, methane and nitrogen production stopped after 30-40, 20-30 h, respectively, and in UASB reactors it was terminated after 30-40 days. The constant of velocity was 3.93 and 0.23 h(-1) respectively, for methane and nitrogen production. The yield coefficient, Yp was 343 and 349 ml CH4 per g of chemical oxygen demand at standard temperature and pressure conditions for batch reactors and UASB reactor, respectively.  相似文献   

16.
The aim of this study was to evaluate the impact of zeolite powders on feasibility of rapid aerobic granulation in the column-type sequencing batch reactors. After 90 days' operation, aerobic granular sludge was formed in both reactors by altering influent chemical oxygen demand/nitrogen (COD/N) ratios. R1 with zeolite powders had better removal capabilities of COD and total nitrogen than R2, which was without zeolite powders. Mixed liquor volatile suspended solid concentrations of the two reactors were 7.36 and 5.45 g/L, while sludge volume index (SVI30) values were 34.9 and 47.9 mg/L, respectively. The mean diameters of aerobic granular sludge in the above two reactors were 2.5 and 1.5 mm, respectively. Both reactors achieved the largest simultaneous nitrification and denitrification (SND) efficiency at an influent COD/N ratio of 8; however, R1 exhibited more excellent SND efficiency than R2. The obtained results could provide a novel technique for rapid aerobic granulation and N removal simultaneously, especially when treating nitrogen-rich industrial wastewater.  相似文献   

17.
The anaerobic treatment of saline effluents using halophilic and halotolerant microbial consortia is of major interest. Inhibition of anaerobic digestion is known to occur at high salt content. However, it seems that the suitable adaptation of an anaerobic sludge makes possible the treatment of saline wastewater. In this study, a non-saline anaerobic sludge was inoculated in two anaerobic batch reactors operating with a different substrate (distillery vinasse and ethanol) and subjected to increasing NaCl concentrations. The performance of the digesters appeared to be highly dependent on the nature of the substrate, and a similar level of inhibition (i.e. around 90% of the specific loading rate and specific methanogenic activity) was stated at 10 g l−1 of NaCl with distillery vinasse and 60 g l−1 of NaCl with ethanol. The characterization of the microflora and its adaptation to increasing NaCl conditions were also investigated using molecular tools based on the analysis of genomic 16S rDNA. The microbial communities revealed a high diversity that could be maintained in both reactors despite the increase in NaCl concentrations.  相似文献   

18.
生物膜法和SBR法相结合处理难降解制药废水的研究   总被引:9,自引:0,他引:9  
采用生物膜法和SBR法相结合的废水处理工艺处理含抗生素类等难降解的制药废水 ,对生物膜的耐冲击负荷能力、生物膜对进水可生化性的影响、生物膜对好氧SBR活性污泥性能的影响、pH对系统去除效果的影响等工艺条件进行研究 ,并通过与传统SBR处理工艺的对比试验 ,进一步揭示了生物膜法和SBR法相结合的处理工艺强的耐冲击负荷能力。  相似文献   

19.
A bioaugmentation approach combining several strategies was applied to achieve degradation of 3-chloroaniline (3CA) in semicontinuous activated sludge reactors. In a first step, a 3CA-degrading Comamonas testosteroni strain carrying the degradative plasmid pNB2 was added to a biofilm reactor, and complete 3CA degradation together with spread of the plasmid within the indigenous biofilm population was achieved. A second set of reactors was then bioaugmented with either a suspension of biofilm cells removed from the carrier material or with biofilm-containing carrier material. 3CA degradation was established rapidly in all bioaugmented reactors, followed by a slow adaptation of the non-bioaugmented control reactors. In response to variations in 3CA concentration, all reactors exhibited temporary performance breakdowns. Whereas duplicates of the control reactors deviated in their behaviour, the bioaugmented reactors appeared more reproducible in their performance and population dynamics. Finally, the carrier-bioaugmented reactors showed an improved performance in the presence of high 3CA influent concentrations over the suspension-bioaugmented reactors. In contrast, degradation in one control reactor failed completely, but was rapidly established in the remaining control reactor.  相似文献   

20.
This work presents a distributed parameter model of the anaerobic digestion process. The model is based on the Anaerobic digestion model no. 1 (ADM1) and was developed to simulate anaerobic digestion process in high-rate reactors with significant axial dispersion, such as in upflow anaerobic sludge bed (UASB) reactors. The model, which was named ADM1d, combines ADM1's kinetics of biomass growth and substrate transformation with axial dispersion material balances. ADM1d uses a hyperbolic tangent function to describe biomass distribution within a one compartment model. A comparison of this approach with a two-compartment, sludge bed - liquid above the bed, model showed similar simulation results while the one-compartment model had less equations. A comparison of orthogonal collocation and finite difference algorithms for numerical solution of ADM1d showed better stability of the finite difference algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号