首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A variable number tandem repeat polymorphism in the coding region of the circadian clock PERIOD3 (PER3) gene has been shown to affect sleep. Because circadian rhythms and sleep are known to modulate sympathovagal balance, we investigated whether homozygosity for this PER3 polymorphism is associated with changes in autonomic nervous system (ANS) activity during sleep and wakefulness at baseline and after sleep deprivation. Twenty-two healthy participants were selected according to their PER3 genotype. ANS activity, evaluated by heart rate (HR) and HR variability (HRV) indexes, was quantified during baseline sleep, a 40-h period of wakefulness, and recovery sleep. Sleep deprivation induced an increase in slow-wave sleep (SWS), a decrease in the global variability, and an unbalance of the ANS with a loss of parasympathetic predominance and an increase in sympathetic activity. Individuals homozygous for the longer allele (PER3(5/5)) had more SWS, an elevated sympathetic predominance, and a reduction of parasympathetic activity compared with PER3(4/4), in particular during baseline sleep. The effects of genotype were strongest during non-rapid eye movement (NREM) sleep and absent or much smaller during REM sleep. The NREM-REM cycle-dependent modulation of the low frequency-to-(low frequency + high frequency) ratio was diminished in PER3(5/5) individuals. Circadian phase modulated HR and HRV, but no interaction with genotype was observed. In conclusion, the PER3 polymorphism affects the sympathovagal balance in cardiac control in NREM sleep similar to the effect of sleep deprivation.  相似文献   

3.
4.
5.
This study investigated the effects of variations in sleep pressure on cardiac autonomic activity and body temperature. In a counterbalanced design, 12 healthy, young subjects (6 men and 6 women) remained recumbent during 30 h of wakefulness (high sleep pressure) and 6 h of wakefulness (low sleep pressure). Both periods of wakefulness were immediately followed by a sleep opportunity, and the first 2 h of sleep were analyzed. During extended hours of wakefulness, a reduction in heart rate was mediated by a decline in cardiac sympathetic activity (measured via preejection period) and the maintenance of cardiac parasympathetic activity (measured via respiratory sinus arrhythmia). In subsequent high-pressure sleep, parasympathetic activity was amplified and sympathetic activity was negatively associated with electroencephalographic slow-wave activity. Sleep deprivation had no impact on foot temperature, but it did alter the pattern of change in core body temperature. A downregulation of cardiac autonomic activity during both extended hours of wakefulness and subsequent sleep may respectively provide "protection" and "recovery" from the temporal extension of cardiac demand.  相似文献   

6.
Zinkovska, Sophia, and Debra A. Kirby.Intracerebroventricular propranolol prevented vascular resistanceincreases on arousal from sleep apnea. J. Appl.Physiol. 82(5): 1637-1643, 1997.Despite theincreased risk of sudden cardiac death associated with sleep apnea,little is known about mechanisms controlling cardiovascular responsesto sleep apnea and arousal. Chronically instrumented pigs were used toinvestigate the effects of airway obstruction (AO) duringrapid-eye-movement (REM) and non-REM (NREM) sleep and arousal on meanarterial pressure (MAP), heart rate (HR), cardiac output (CO), andtotal peripheral resistance (TPR). A stainless steelcannula was implanted in the lateral cerebral ventricle. During REMsleep, HR was 133 ± 10 beats/min, MAP was 65 ± 3 mmHg, CO was1,435 ± 69 ml/min, and TPR was 0.046 ± 0.004 mmHg · ml1 · min.During AO, CO decreased by 90 ± 17 ml/min(P < 0.05). On arousal from AO, MAPincreased by 15 ± 3 mmHg, HR increased by 10 ± 3 beats/min, andTPR increased by 0.008 ± 0.001 mmHg · ml1 · min(all P < 0.05). Changes during NREMwere similar but were more modest during AO. After theintracerebroventricular administration of propranolol (50 µg/kg; a-adrenoreceptor blocking agent), decreases in CO during AO andincreases in HR during arousal were intact, but increases in MAP andTPR were no longer significant. These data suggest thatvascular responses to AO during sleep may be regulated in part by-adrenergic receptors in the central nervous system.

  相似文献   

7.
8.
9.
We hypothesize that sleep apnea-hypopnea alters interaction between cardiac vagal modulation and sleep delta EEG. Sleep apnea-hypopnea syndrome (SAHS) is related to cardiovascular complications in men. SAHS patients show higher sympathetic activity than normal subjects. In healthy men, non-rapid eye movement (NREM) sleep is associated with cardiac vagal influence, whereas rapid eye movement (REM) sleep is linked to cardiac sympathetic activity. Interaction between cardiac autonomic modulation and delta sleep EEG is not altered across a life span nor is the delay between appearances of modifications in both signals. Healthy controls, moderate SAHS, and severe SAHS patients were compared across the first three NREM-REM cycles. Spectral analysis was applied to ECG and EEG signals. High frequency (HF) and low frequency (LF) of heart rate variability (HRV), ratio of LF/HF, and normalized (nu) delta power were obtained. A coherency analysis between HF(nu) and delta was performed, as well as a correlation analysis between obstructive apnea index (AI) or hypopnea index (HI) and gain, coherence, or phase shift. HRV components were similar between groups. In each group, HF(nu) was larger during NREM, while LF(nu) predominated across REM and wake stages. Coherence and gain between HF(nu) and delta decreased from controls to severe SAHS patients. In SAHS patients, the delay between modifications in HF(nu) and delta did not differ from zero. AI and HI correlated negatively with coherence, while HI correlated negatively with gain only. Apneas-hypopneas affect the link between cardiac sympathetic and vagal modulation and delta EEG demonstrated by the loss of cardiac autonomic activity fluctuations across shifts in sleep stages. Obstructive apneas and hypopneas alter the interaction between both signals differently.  相似文献   

10.
Influence of testosterone on breathing during sleep   总被引:6,自引:0,他引:6  
Apneas and hypopneas during sleep occur more frequently in men than women. Disordered breathing is also reported to increase in hypogonadal men following testosterone administration. This suggests a hormonal influence on sleeping respiratory pattern. We therefore studied respiratory rhythm during sleep in 11 hypogonadal males both on and off testosterone-replacement therapy. In four subjects the anatomy (computerized tomography) and airflow resistance of the upper airway were also determined on both occasions. Sleep stage distribution and duration were unchanged following androgen administration. However, both apneas and hypopneas increased significantly during testosterone replacement so that the total number of disordered breathing events (apneas + hypopneas) per hour of sleep rose from 6.4 +/- 2.1 to 15.4 +/- 7.0 (P less than 0.05). This was a highly variable event with some subjects demonstrating large increases in apneas and hypopneas when androgen was replaced, whereas others had little change in respiration during sleep. Upper airway dimensions, on the other hand, were unaffected by testosterone. These results suggest that testosterone contributes to sleep-disordered breathing through mechanisms independent of anatomic changes in the upper airway.  相似文献   

11.
Effect of short-term sleep loss on breathing   总被引:3,自引:0,他引:3  
  相似文献   

12.
Arousal is an important survival mechanism when infants are confronted with hypoxia during sleep. Many sudden infant death syndrome (SIDS) infants are exposed to repeated episodes of hypoxia before death and have impaired arousal mechanisms. We hypothesized that repeated exposures to hypoxia would cause a progressive blunting of arousal, and that a reversal of this process would occur if the hypoxia was terminated at the time of arousal. P5 (postnatal age of 5 days), P15, and P25 rat pups were exposed to either eight trials of hypoxia (3 min 5% O(2) alternating with room air) (group A), or three hypoxia trials as in group A, followed by five trials in which hypoxia was terminated at arousal (group B). In both groups A and B, latency increased over the first four trials of hypoxia, but reversed in group B animals during trials 5-8. Progressive arousal blunting was more pronounced in the older pups. The effects of intermittent hypoxia on heart rate also depended on age. In the older pups, heart rate increased with each hypoxia exposure. In the P5 pups, however, heart rate decreased during hypoxia and did not return to baseline between exposures, resulting in a progressive fall of baseline values over successive hypoxia exposures. In the group B animals, heart rate changes during trials 1-4 also reversed during trials 5-8. We conclude that exposure to repeated episodes of hypoxia can cause progressive blunting of arousal, which is reversible by altering the exposure times to hypoxia and the period of recovery between hypoxia exposures.  相似文献   

13.
14.
Critchley HD  Mathias CJ  Dolan RJ 《Neuron》2002,33(4):653-663
The degree to which perceptual awareness of threat stimuli and bodily states of arousal modulates neural activity associated with fear conditioning is unknown. We used functional magnetic neuroimaging (fMRI) to study healthy subjects and patients with peripheral autonomic denervation to examine how the expression of conditioning-related activity is modulated by stimulus awareness and autonomic arousal. In controls, enhanced amygdala activity was evident during conditioning to both "seen" (unmasked) and "unseen" (backward masked) stimuli, whereas insula activity was modulated by perceptual awareness of a threat stimulus. Absent peripheral autonomic arousal, in patients with autonomic denervation, was associated with decreased conditioning-related activity in insula and amygdala. The findings indicate that the expression of conditioning-related neural activity is modulated by both awareness and representations of bodily states of autonomic arousal.  相似文献   

15.
犬双心室多点组合同步起搏的心肌力学效应研究   总被引:1,自引:0,他引:1  
目的 :探讨多点组合同步心室起搏对犬心肌收缩 /舒张力学效应和心脏作功的影响。方法 :12只犬 ,随机进行 5种组合模式的双心室同步起搏 ,并以自身窦性心律状态 (SNR )作为对照。记录各起搏状态下 :左室内压上升和下降最大数率 (±dp/dtmax)、左室松弛时间常数 (τ)、左 /右室游离壁室壁肌张力 (L/RV tensileforce ,L/RV TF)、每搏量 (SV )、左室每搏功 (LVSW )和右室每搏功 (RVSW )等心肌收缩 /舒张力学和心脏作功参数。结果 :双室cHisB LVPL起搏和RVA LVPL起搏的心肌收缩力学参数 +dp/dtmax和L/RV TF较右室双点cHisB RVA起搏增加 ,前两组的心肌舒张力学参数 dp/dtmax也较cHisB RVA起搏增加 ,而τ值较后者缩短。双室三点cHisB RVA LVPL起搏和cHisB RVA LVA起搏的上述各参数均优于双室cHisB LVPL起搏和RVA LVPL起搏。而cHisB RVA LVPL起搏的 +dp/dtmax和L/RV TF均较cHisB RVA LVA起搏增加。cHisB RVA LVPL起搏 dp/dtmax较cHisB RVA LVA起搏提高 6.0 % ,τ值缩短 3 .7%。cHisB LVPL起搏和RVA LVPL起搏的SV、LVSW和RVSW等心室作功参数均较cHisB RVA起搏增加 ,而HisB RVA LVPL起搏的上述心脏作功各参数 ,亦分别较cHisB RVA LVA起搏和cHisB LVPL起搏有不同程度的增加。结论 :双室三点cHisB RVA LVPL组合同  相似文献   

16.
Neural-mechanical coupling of breathing in REM sleep   总被引:3,自引:0,他引:3  
Smith, C. A., K. S. Henderson, L. Xi, C.-M. Chow, P. R. Eastwood, and J. A. Dempsey. Neural-mechanical coupling of breathing in REM sleep. J. Appl.Physiol. 83(6): 1923-1932, 1997.During rapid-eye-movement (REM) sleep theventilatory response to airway occlusion is reduced. Possiblemechanisms are reduced chemosensitivity, mechanical impairment of thechest wall secondary to the atonia of REM sleep, or phasic REM eventsthat interrupt or fractionate ongoing diaphragm electromyogram (EMG)activity. To differentiate between these possibilities, we studiedthree chronically instrumented dogs before, during, and after15-20 s of airway occlusion during non-REM (NREM) and phasic REMsleep. We found that 1) for a given inspiratory time the integrated diaphragm EMG(Di) was similar or reduced in REM sleep relativeto NREM sleep; 2) for a givenDi in response to airway occlusion and thehyperpnea following occlusion, the mechanical output (flow or pressure)was similar or reduced during REM sleep relative to NREM sleep;3) for comparable durations ofairway occlusion the Di and integratedinspiratory tracheal pressure tended to be smaller and more variable inREM than in NREM sleep, and 4)significant fractionations (caused visible changes in trachealpressure) of the diaphragm EMG during airway occlusion inREM sleep occurred in ~40% of breathing efforts. Thus reducedand/or erratic mechanical output during and after airwayocclusion in REM sleep in terms of flow rate, tidal volume, and/or pressure generation is attributable largely to reduced neural activity of the diaphragm, which in turn is likely attributable to REM effects, causing reduced chemosensitivity at the level of theperipheral chemoreceptors or, more likely, at the central integrator.Chest wall distortion secondary to the atonia of REM sleep maycontribute to the reduced mechanical output following airway occlusionwhen ventilatory drive is highest.

  相似文献   

17.
Myocardialization of the cardiac outflow tract.   总被引:15,自引:0,他引:15  
During development, the single-circuited cardiac tube transforms into a double-circuited four-chambered heart by a complex process of remodeling, differential growth, and septation. In this process the endocardial cushion tissues of the atrioventricular junction and outflow tract (OFT) play a crucial role as they contribute to the mesenchymal components of the developing septa and valves in the developing heart. After fusion, the endocardial ridges in the proximal portion of the OFT initially form a mesenchymal outlet septum. In the adult heart, however, this outlet septum is basically a muscular structure. Hence, the mesenchyme of the proximal outlet septum has to be replaced by cardiomyocytes. We have dubbed this process "myocardialization." Our immunohistochemical analysis of staged chicken hearts demonstrates that myocardialization takes place by ingrowth of existing myocardium into the mesenchymal outlet septum. Compared to other events in cardiac septation, it is a relatively late process, being initialized around stage H/H28 and being basically completed around stage H/H38. To unravel the molecular mechanisms that are responsible for the induction and regulation of myocardialization, an in vitro culture system in which myocardialization could be mimicked and manipulated was developed. Using this in vitro myocardialization assay it was observed that under the standard culture conditions (i) whole OFT explants from stage H/H20 and younger did not spontaneously myocardialize the collagen matrix, (ii) explants from stage H/H21 and older spontaneously formed extensive myocardial networks, (iii) the myocardium of the OFT could be induced to myocardialize and was therefore "myocardialization-competent" at all stages tested (H/H16-30), (iv) myocardialization was induced by factors produced by, most likely, the nonmyocardial component of the outflow tract, (v) at none of the embryonic stages analyzed was ventricular myocardium myocardialization-competent, and finally, (vi) ventricular myocardium did not produce factors capable of supporting myocardialization.  相似文献   

18.
19.
20.
The aim of this study was to assess the effects of metabolic and autonomic nervous control on high-intensity resistance training (HRT) as determined by pancreatic glucose sensitivity (GS), insulin sensitivity (IS), blood lactate ([La]), and heart rate variability (HRV) in rats. Thirty male, albino Wistar rats (292 ± 20 g) were divided into 3 groups: sedentary control (SC), low-resistance training (LRT), and HRT. The animals in the HRT group were submitted to a high-resistance protocol with a progressively increasing load relative to body weight until exhaustion, whereas the LRT group performed the same exercise regimen with no load progression. The program was conducted 3 times per week for 8 weeks. The [La], parameters related to the functionality of pancreatic tissue, and HRV were measured. There was a significant increase in peak [La] only in the HRT group, but there was a reduction in [La] when corrected to the maximal load in both trained groups (LRT and HRT, p < 0.05). Both trained groups exhibited an increase in IS; however, compared with SC and LRT, HRT demonstrated a significantly higher GS posttraining (p < 0.05). With respect to HRV, the low-frequency (LF) band, in milliseconds squared, reduced in both trained groups, but the high-frequency band, in milliseconds squared and nu, increased, and the LF in nu, decreased only in the HRT group (p < 0.05). The HRT protocol produced significant and beneficial metabolic and cardiac autonomic adaptations. These results provide evidence for the positive benefits of HRT in counteracting metabolic and cardiovascular dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号