首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insertional mutagenesis has been at the core of functional genomics in many species. In the mouse, improved vectors and methodologies allow easier genome-wide and phenotype-driven insertional mutagenesis screens. The ability to generate homozygous diploid mutations in mouse embryonic stem cells allows prescreening for specific null phenotypes prior to in vivo analysis. In addition, the discovery of active transposable elements in vertebrates, and their development as genetic tools, has led to in vivo forward insertional mutagenesis screens in the mouse. These new technologies will greatly contribute to the speed and ease with which we achieve complete functional annotation of the mouse genome.  相似文献   

2.
3.
Phenotype-driven mutagenesis screens are used to discover gene function in model organisms. Mutations that are induced by chemical mutagens can occur anywhere in the genome. However, the use of a balancer chromosome (where a phenotypically marked segment of a chromosome is inverted) in a mutagenesis screen enables mutations to be mapped in a defined region of the genome and maintained stably in a heterozygous state. Mouse balancer chromosomes can be engineered using Cre-loxP technology in selected regions of the genome. Balancer mutagenesis screens will provide a systematic functional analysis of the genes on mouse chromosomes, and consequently, will facilitate a functional annotation of the mammalian genome sequence.  相似文献   

4.
5.
The ultimate goal of genome research on the model flowering plant Arabidopsis thaliana is the identification of all of the genes and understanding their functions. A major step towards this goal, the genome sequencing project, is nearing completion; however, functional studies of newly discovered genes have not yet kept up to this pace. Recent progress in large-scale insertional mutagenesis opens new possibilities for functional genomics in Arabidopsis. The number of T-DNA and transposon insertion lines from different laboratories will soon represent insertions into most Arabidopsis genes. Vast resources of gene knockouts are becoming available that can be subjected to different types of reverse genetics screens to deduce the functions of the sequenced genes.  相似文献   

6.
Mutagenesis screens are a valuable method to identify genes that are required for normal development. Previous mouse mutagenesis screens for lethal mutations were targeted at specific time points or for developmental processes. Here we present the results of lethal mutant isolation from two mutagenesis screens that use balancer chromosomes. One screen was localized to mouse chromosome 4, between the STS markers D4Mit281 and D4Mit51. The second screen covered the region between Trp53 and Wnt3 on mouse chromosome 11. These screens identified all lethal mutations in the balancer regions, without bias towards any phenotype or stage of death. We have isolated 19 lethal lines on mouse chromosome 4, and 59 lethal lines on chromosome 11, many of which are distinct from previous mutants that map to these regions of the genome. We have characterized the mutant lines to determine the time of death, and performed a pair-wise complementation cross to determine if the mutations are allelic. Our data suggest that the majority of mouse lethal mutations die during mid-gestation, after uterine implantation, with a variety of defects in gastrulation, heart, neural tube, vascular, or placental development. This initial group of mutants provides a functional annotation of mouse chromosomes 4 and 11, and indicates that many novel developmental phenotypes can be quickly isolated in defined genomic intervals through balancer chromosome mutagenesis screens.  相似文献   

7.
It has been nearly a decade since the completion of two large-scale chemical mutagenesis screens in zebrafish, and two years since the completion of a large-scale insertional mutagenesis. In this article, we use the accumulated data from these screens to compare the efficiency of each mutagen to isolate mutants and to identify mutated genes, and argue that the two mutagens target the same set of genes. We then review how both forward genetic screens and reverse genetic techniques, such as morpholinos and TILLING, and transgenics are being used to develop models of human disease.  相似文献   

8.
Mutagenesis of mice with N-ethyl-N-nitrosourea (ENU) is a phenotype-driven approach to unravel gene function and discover new biological pathways. Phenotype-driven approaches have the advantage of making no assumptions about the function of genes and their products and have been successfully applied to the discovery of novel gene-phenotype relationships in many physiological systems. ENU mutagenesis of mice is used in many large-scale and more focused projects to generate and identify novel mouse models for the study of gene functions and human disease. This review examines the strategies and tools used in ENU mutagenesis screens to efficiently generate and identify functional mutations.  相似文献   

9.
Tandem gene arrays: a challenge for functional genomics   总被引:1,自引:0,他引:1  
In sequenced plant genomes, 15% or more of the identified genes are members of tandem-arrayed gene families. Because mutating only one gene in a duplicated pair often produces no measurable phenotype, this poses a particular challenge for functional analysis. To generate phenotypic knockouts, it is necessary to create deletions that affect multiple genes, select for rare meiotic recombination between tightly linked loci, or perform sequential mutant screens in the same plant line. Successfully implemented strategies include PCR-based screening for fast neutron-induced deletions, selection for recombination between herbicide resistance markers, and localized transposon mutagenesis. Here, we review the relative merits of current genetic approaches and discuss the prospect of site-directed mutagenesis for generating elusive knockouts of tandem-arrayed gene families.  相似文献   

10.
To meet the increasing demand of linking sequence information to gene function in vertebrate models, genetic modifications must be introduced and their effects analyzed in an easy, controlled, and scalable manner. In the mouse, only about 10% (estimate) of all genes have been knocked out, despite continuous methodologic improvement and extensive effort. Moreover, a large proportion of inactivated genes exhibit no obvious phenotypic alterations. Thus, in order to facilitate analysis of gene function, new genetic tools and strategies are currently under development in these model organisms. Loss of function and gain of function mutagenesis screens based on transposable elements have numerous advantages because they can be applied in vivo and are therefore phenotype driven, and molecular analysis of the mutations is straightforward. At present, laboratory harnessing of transposable elements is more extensive in invertebrate models, mostly because of their earlier discovery in these organisms. Transposons have already been found to facilitate functional genetics research greatly in lower metazoan models, and have been applied most comprehensively in Drosophila. However, transposon based genetic strategies were recently established in vertebrates, and current progress in this field indicates that transposable elements will indeed serve as indispensable tools in the genetic toolkit for vertebrate models. In this review we provide an overview of transposon based genetic modification techniques used in higher and lower metazoan model organisms, and we highlight some of the important general considerations concerning genetic applications of transposon systems.  相似文献   

11.
The genetic control of mammalian gametogenesis is inadequately characterized because of a lack of mutations causing infertility. To further the discovery of genes required for mammalian gametogenesis, phenotype-driven screens were performed in mice using random chemical mutagenesis of whole animals and embryonic stem cells. Eleven initial mutations are reported here that affect proliferation of germ cells, meiosis, spermiogenesis, and spermiation. Nine of the mutations have been mapped genetically. These preliminary studies provide baselines for estimating the number of genes required for gametogenesis and offer guidance in conducting new genetic screens that will accelerate and optimize mutant discovery. This report demonstrates the efficacy and expediency of mutagenesis to identify new genes required for mammalian gamete development.  相似文献   

12.
Experimental approaches for deciphering the function of human genes rely heavily on our ability to generate mutations in model organisms such as the mouse. However, because recessive mutations are masked by the wild-type allele in the diploid context, conventional mutagenesis and screening is often laborious and costly. Chromosome engineering combines the power of gene targeting in embryonic stem (ES) cells with Cre--loxP technology to create mice that are functionally haploid in discrete portions of the genome. Chromosome deletions, duplications and inversions can be tagged with visible markers, facilitating strain maintenance. These approaches allow for more refined mutagenesis screens that will greatly accelerate functional mouse genomics and generate mammalian models for developmental processes and cancer.  相似文献   

13.
To facilitate genetic screens to identify and maintain recessive mutations that map to the short arm of human chromosome 1, we have utilized chromosome engineering to generate two mouse strains that carry large inversions on the distal region of mouse chromosome 4. The inversion intervals are 16 and 22 cM in size together they cover approximately half of chromosome 4. Since recombination between the wild-type and inversion chromosomes does not occur within these inversion intervals, mutant alleles of genes mapping to this region can be identified and maintained. Therefore, these inversion chromosomes work as balancer chromosomes. These inversions have the additional advantage that they are tagged with genes encoding the visible coat color markers tyrosinase and agouti, and therefore the dosage of the inversion chromosome (+/+, Inv/+, Inv/Inv) can be visually recognized. These inversion strains will be extremely useful for mutagenesis screens that focus on functional annotation of human chromosome 1p.  相似文献   

14.
Insertional mutagenesis based on gene trap vectors that capture endogenous splice sites is a promising tool for functional genomics. Several groups have proposed large-scale gene trap screens, but questions remain as to the type of vectors and their design. We report a set of plasmid-encoded gene trap vectors and the disruption of two novel genes. Our results include a comparison of the relative gene trapping efficiencies of two different splice acceptor sequences in ES cells and an analysis of the structure of several gene trap insertions.  相似文献   

15.
The study of amphibian embryogenesis has provided important insight into the mechanisms of vertebrate development. The frog Xenopus laevis has been an important model of vertebrate cell biology and development for many decades. Genetic studies in this organism are not practical because of the tetraploid nature of the genome and the long generation time of this species. Recently, a closely related frog, namely Xenopus tropicalis, has been proposed as an alternative system; it shares all of the physical characteristics that make X. laevis a useful model but has the advantage of a diploid genome and short generation time. The rapid accumulation of genetic resources for this animal and the success of pilot mutagenesis screens have helped propel this model system forward. Transposable elements will provide invaluable tools for manipulating the frog genome. These integration systems are ideally suited to transgenesis and insertional mutagenesis strategies in the frog. The high fecundity of the frog combined with the ability to remobilize transposon transgenes integrated into frog genome will allow large-scale insertional mutagenesis screens to be performed in laboratories with modest husbandry capacities.  相似文献   

16.
姚潇  黄留玉  杨伯伦  苏国富 《遗传》2002,24(6):721-726
信号标签诱变技术是以整个基因组为基础的研究病原体致病机制,可在体内对毒力基因进行高通量筛选的一种新方法。近几年应用该技术已对十多种病原微生物进行了筛选。这些筛选中除了找到已知的毒力基因外,还都鉴定到了未知的毒力因子。本文就该技术的原理、优缺点、应用的必要条件、技术的改进及应用该技术鉴定到的毒力基因等作一综述。 A Novel Approach to Study Pathogenesis of Pathogens in vivo——Signature-tagged Mutagenesis YAO Xiao1,2,HUANG Liu-yu1,YANG Bo-lun2,SU Guo-fu1 1.Beijing Institute of Biotechnoloy,Beijing 100071,China; 2.College of Environmental and Chemical Engineering,Xi'an Jiaotong University,Xi'an 710049,China Abstract:Signature-tagged mutagenesis (STM) is a novel approach to study pathogenesis of pathogens and to screen virulence genes with high throughput in vivo,which is based on whole genome of pathogen in question.In resent years,more than ten species of microbial pathogens have been screened with this technology.There are also unknown virulence factors being identified with exception of known virulence genes identified in all these screens.This article reviews the principle,advantages and current limitations,the requirements,modifications of STM,and to date virulence genes identified by this technology. Key words:signature-tagged mutagenesis;virulence genes;pathogens;in vivo  相似文献   

17.
Methods for cancer gene discovery include identification of viral oncogenes, identification of genes associated with recurrent chromosomal aberrations, and screens for genes capable of the transformation of cells in culture. In recent years, the completed genome sequence of human and model organisms has markedly enhanced cancer gene identification. Whole genome, high-throughput screens have been facilitated by the advent of new technologies such as murine leukemia virus-based mutagenesis, Sleeping Beauty-based mutagenesis, RNA interference, exon re-sequencing, and high-resolution methods for detecting chromosomal amplifications and deletions; these, in turn, have led to the identification of novel tumor suppressors and oncogenes. The identification of genes that are altered by mutation or expression and which are directly involved in tumor initiation and maintenance will be instrumental for understanding cancer phenotypic variation and for identifying crucial therapeutic targets.  相似文献   

18.
Coupled mutagenesis screens and genetic mapping in zebrafish   总被引:4,自引:0,他引:4  
Forward genetic analysis is one of the principal advantages of the zebrafish model system. However, managing zebrafish mutant lines derived from mutagenesis screens and mapping the corresponding mutations and integrating them into the larger collection of mutations remain arduous tasks. To simplify and focus these endeavors, we developed an approach that facilitates the rapid mapping of new zebrafish mutations as they are generated through mutagenesis screens. We selected a minimal panel of 149 simple sequence length polymorphism markers for a first-pass genome scan in crosses involving C32 and SJD inbred lines. We also conducted a small chemical mutagenesis screen that identified several new mutations affecting zebrafish embryonic melanocyte development. Using our first-pass marker panel in bulked-segregant analysis, we were able to identify the genetic map positions of these mutations as they were isolated in our screen. Rapid mapping of the mutations facilitated stock management, helped direct allelism tests, and should accelerate identification of the affected genes. These results demonstrate the efficacy of coupling mutagenesis screens with genetic mapping.  相似文献   

19.
The piebald deletion complex is a set of overlapping chromosomal deficiencies on distal mouse chromosome 14. We surveyed the functional genetic content of the piebald deletion region in an essential gene mutagenesis screen of 952 genomes to recover seven lethal mutants. The ENU‐induced mutations were mapped to define genetic intervals using the piebald deletion panel. Lethal mutations included loci required for establishment of the left‐right embryonic axis and a loss‐of‐function allele of Phr1 resulting in respiratory distress at birth. A functional map of the piebald region integrates experimental genetic data from the deletion panel, mutagenesis screen, and the targeted disruption of specific genes. A comparison of several genomic intervals targeted in regional mutagenesis screens suggests that the piebald region is characterized by a low gene density and high essential gene density with a distinct genomic content and organization that supports complex regulatory interactions and promotes evolutionary stability. genesis 47:392–403, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Gene-trap mutagenesis: past, present and beyond   总被引:3,自引:0,他引:3  
Although at least 35,000 human genes have been sequenced and mapped, adequate expression or functional information is available for only approximately 15% of them. Gene-trap mutagenesis is a technique that randomly generates loss-of-function mutations and reports the expression of many mouse genes. At present, several large-scale, gene-trap screens are being carried out with various new vectors, which aim to generate a public resource of mutagenized embryonic stem (ES) cells. This resource now includes more than 8,000 mutagenized ES-cell lines, which are freely available, making it an appropriate time to evaluate the recent advances in this area of genomic technology and the technical hurdles it has yet to overcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号