首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specificity of 26S proteasomes' endoribonuclease activity has been shown to be changed under effect of erythroid differentiation (hemin) and programmed cell death (diethylmaleate) inductors in proerythroleukemic K562 cells. Treatment of K562 cells with apoptosis and differentiation inductors leads to the specific stimulation of RNase activity towards certain mRNA and to reduction of proteasome RNase activity towards other mRNA. The enzymatic activity under study has been demonstrated to be specifically and selectively dependent on phosphorylation of 26S proteasome subunits as well as on Mg and Ca ions. The conclusion is drawn that the specificity of the proteasomes' RNAse activity is regulated during differentiation and apoptosis, and selective regulation of the activity of different nuclease centers is suggested, the mechanism involving changes in phosphorylation of proteasome subunits and cation homeostasis.  相似文献   

2.
26S proteasome is a large multi-subunit protein complex involved in proteolytic degradation of proteins. In addition to its canonical proteolytic activity, the proteasome is also associated with recently characterized endoribonuclease (endo-RNAse) activity. However, neither functional significance, nor the mechanisms of its regulation are currently known. In this report, we show that 26S proteasome is able to hydrolyze various cellular RNAs, including AU-rich mRNA of c-myc and c-fos. The endonucleolytic degradation of these mRNAs is exerted by one of the 26S proteasome subunits, PSMA5 (α5). The RNAse activity of 26S proteasome is differentially affected by various extra-cellular signals. Moreover, this activity contributes to the process of degradation of c-myc mRNA during induced differentiation of K562 cells, and may be controlled by phosphorylation of the adjacent subunits, PSMA1 (α6) and PSMA3 (α7). Collectively, the data presented in this report suggest a causal link between cell signalling pathways, endo-RNAse activity of the 26S proteasome complex and metabolism of cellular RNAs.  相似文献   

3.
The participation of proteasome in the programmed cells death is now extensively investigated. Studies using selective inhibitors of proteasomes have provided a direct evidence of both pro- and anti-apoptotic functions of proteasomes. Such opposite roles of 26S proteasomes in regulation of apoptosis may be defined by the proliferative state of cell. The induction of apoptosis in K562 cells by diethylmaleate was used as a model to investigate changes in the subunit composition, phosphorylation state and enzymatic activities of 26S proteasomes undergoing the programmed cell death. Here we have shown that proteasomes isolated from the cytoplasm of control and diethylmaleate treated K562 cells differ in their subunit patterns, as well as in the phosphorylation state of subunits on threonine and tyrosine residues. It has been shown for the first time that proteolytic activity of 26S proteasomes is decreased, and endoribonuclease activity of 26S proteasomes is affected under diethylmaleate action on K562 cells. Treatment of K562 cells with an inductor of apoptosis--diethylmaleate--leads to modification of a proteasomal subunit (zeta/alpha5) associated with RNase activity of proteasomes. These data suggest the subunit composition and enzymatic activities of 26S proteasomes to be changed in K562 cells undergoing apoptosis, and that specific subtypes of 26S proteasomes participate in execution of programmed death of these cells.  相似文献   

4.
It has been shown that endoribonuclease activity of alpha-RNP particles and 26S proteasomes are changed under the action of inductors of programmed cell death. Treatment of K562 cells with inductors of apoptosis--doxorubicin (adriamycin) and diethylmaleate--lead to a significant stimulation of RNAse activity of alpha-RNP and to reduction of proteasome RNase activity. The enzymatic activity under study has been shown to be specifically and selectively dependent on phosphorylation of subunits of alpha-RNP particles and 26S proteasomes. The characteristics of RNAse activity of different subpopulations of proteasomes differ. The specificity of a subpopulation of proteasomes exported from the cell has been demonstrated. Proteasome and alpha-RNP involvement in the coordinated control of stability of various specific messenger RNA molecules is suggested, and one of the mechanisms of this control might be the export of specific subpopulation of proteasomes from the cell.  相似文献   

5.
In the present work, changes in the subunit composition, phosphorylation state, and enzymatic activities of 26S proteasomes undergoing programmed cell death were studied. Apoptosis in proerythroleukemic K562 cells was induced by the glutathione-depleting agent, diethylmaleate (DEM). We have shown for the first time that proteasomes isolated from the nuclei of control and apoptotic K562 cells differ in their subunit patterns, as well as in the phosphorylation state of subunits on threonine and tyrosine residues. As well, the trypsin-and chymotrypsin-like activities of nuclear proteasomes and the specificity of proteasomal nucleolysis of several individual messenger RNAs (c-fos and c-myc) were found to change under DEM action in K562 cells. DEM treatment of K562 cells led to a modification of proteasomal zeta/α5 and iota/α6 subunits associated with RNase activity. The obtained results argue in favor of changes of proteasomal subunit composition, phosphorylation state, and enzymatic activities, i.e., indicate the so-called reprogramming of the nuclear proteasome population during induced apoptosis in K562 cells.  相似文献   

6.
Changes in the subunit composition, phosphorylation of the subunits, and regulation of the activities of 26S proteasomes in proliferating cells undergoing programmed cell death have not been studied so far. Moreover, there are no reports on phosphorylation of proteasome subunits both in normal and in neoplastic cells during apoptosis. The data of the present study show for the first time that apoptosis inductor doxorubicin regulates subunit composition, enzymatic activities, and phosphorylation state of 26S proteasomes in neoplastic (proerythroleukemic K562) cells or, in other words, induces reprogramming of proteasome population. Furthermore, the phosphorylation state of proteasomes is found to be the mechanism controlling specificity of proteasomal proteolytic and endoribonuclease activities.  相似文献   

7.
8.
In experimental alcoholic liver disease, protein degradation by the ATP-ubiquitin-proteasome pathway is inhibited. Failure of the proteasome to eliminate cytoplasmic proteins leads to the accumulation of oxidized and otherwise modified proteins. One possible explanation for the inhibition of the proteasome is hyperphosphorylation of proteasome subunits. To examine this possibility, the 26S proteasomes from the liver of rats fed ethanol and a pair-fed control were studied by isolating the proteasomes in a purified fraction. The effect of ethanol on the phosphorylation of proteasomal subunits was compared with the hyperphosphorylation of the proteasomes caused by okadaic acid given to rats in vivo. Ethanol ingestion caused an inhibition of the chymotrypsin-like activity of the purified proteasome. The 2D electrophoresis and Western blot analysis of the purified 20S and 26S proteasomes from the ethanol-fed rats indicated that hyperphosphorylation of proteasomal subunits had occured. The proteasomal alpha type subunits C9/alpha3 and C8/alpha7 were hyperphosphorylated compared to the controls. Chymotrypsin-like activity was also inhibited by okadaic acid treatment similar to ethanol feeding. The 26S proteasome fraction examined by isoelectric focusing gel revealed many hyperphosphorylated bands in the proteasomes from the okadaic acid treated and the ethanol fed rat livers compared with the controls. In conclusion hyperphosphorylation of the proteasome subunits occurs in the ethanol treated proteasomal subunits which could be one mechanism of the inhibition of the 26S proteasome caused by ethanol feeding.  相似文献   

9.
Regulation of proteasome complexes by gamma-interferon and phosphorylation   总被引:7,自引:0,他引:7  
Rivett AJ  Bose S  Brooks P  Broadfoot KI 《Biochimie》2001,83(3-4):363-366
Proteasomes play a major role in non-lysosomal proteolysis and also in the processing of proteins for presentation by the MHC class I pathway. In animal cells they exist in several distinct molecular forms which contribute to the different functions. 26S proteasomes contain the core 20S proteasome together with two 19S regulatory complexes. Alternatively, PA28 complexes can bind to the ends of the 20S proteasome to form PA28-proteasome complexes and PA28-proteasome-19S hybrid complexes have also been described. Immunoproteasome subunits occur in 26S proteasomes as well as in PA28-proteasome complexes. We have found differences in the subcellular distribution of the different forms of proteasomes. The gamma-interferon inducible PA28 alpha and beta subunits are predominantly located in the cytoplasm, while 19S regulatory complexes (present at significant levels only in 26S complexes) are present in the nucleus as well as in the cytoplasm. Immunoproteasomes are greatly enriched at the endoplasmic reticulum (ER) where they may facilitate the generation of peptides for transport into the lumen of the ER. We have also investigated the effects of gamma-interferon on the levels and subcellular distribution of inducible subunits and regulator subunits. In each case gamma-interferon was found to increase the level but not to alter the distribution. Several subunits of proteasomes are phosphorylated including alpha subunits C8 (alpha7) and C9 (alpha3), and ATPase subunit S4 (rpt2). Our studies have shown that gamma-interferon treatment decreases the level of phosphorylation of proteasomes. We have investigated the role of phosphorylation of C8 by casein kinase II by site directed mutagenesis. The results demonstrate that phosphorylation at either one of the two sites is essential for the association of 19S regulatory complexes and that the ability to undergo phosphorylation at both sites gives the most efficient incorporation of C8 into the 26S proteasome.  相似文献   

10.
The polo-like kinase (Plk) has been shown to be associated with the anaphase-promoting complex at the transition from metaphase to anaphase and to regulate ubiquitination, the process that targets proteins for degradation by proteasomes. In this study, we have identified proteasomal proteins interacting with Plk by mass spectrometry and found that Plk and 20S proteasome subunits could be reversibly immunoprecipitated from both human CA46 cells and HEK 293 cells transfected with HA-Plk. Furthermore, both coprecipitated Plk and baculovirus-expressed Plk were able to phosphorylate proteasome subunits, and metabolic labeling studies indicate that Plk is partially responsible for the phosphorylation of 20S proteasome subunits C9 and C8 in vivo. In addition, phosphorylation of proteasomes by Plk enhanced proteolytic activity toward an artificial substrate Suc-L-L-V-Y-AMC in vitro and in vivo. Finally, we were also able to detect Plk associated with 26S proteasomes under certain conditions. Together our results suggest that Plk is an important mitotic regulator of proteasome activity.  相似文献   

11.
Wang X  Chen CF  Baker PR  Chen PL  Kaiser P  Huang L 《Biochemistry》2007,46(11):3553-3565
The 26S proteasome is a multisubunit complex responsible for degradation of ubiquitinated substrates, which plays a critical role in regulating various biological processes. To fully understand the function and regulation of the proteasome complex, an important step is to elucidate its subunit composition and posttranslational modifications. Toward this goal, a new affinity purification strategy has been developed using a derivative of the HB tag for rapid isolation of the human 26S proteasome complex for subsequent proteomic analysis. The purification of the complex is achieved from stable 293 cell lines expressing a HB-tagged proteasome subunit and by high-affinity streptavidin binding with TEV cleavage elution. The complete composition of the 26S proteasome complex, including recently assigned new subunits, is identified by LC-MS/MS. In addition, all known proteasome activator proteins and components involved in the ubiquitin-proteasome degradation pathway are identified. Aside from the subunit composition, the N-terminal modification and phosphorylation of the proteasome subunits have been characterized. Twelve novel phosphorylation sites from eight subunits have been identified, and N-terminal modifications are determined for 25 subunits, 12 of which have not been previously reported in mammals. We also observe different N-terminal processing of subunit Rpn2, which results in identification of two different N-termini of the protein. This work presents the first comprehensive characterization of the human 26S proteasome complex by affinity purification and tandem mass spectrometry. The detailed proteomic profiling obtained here is significant to future studies aiming at a complete understanding of the structure-function relationship of the human 26S proteasome complex.  相似文献   

12.
The induction of apoptosis in K562 cells by doxorubicin (DR) was used as a model to investigate changes in the subunit composition, phosphorylation state and enzymatic activities of 26S proteasomes in cells undergoing the programmed death. Here we have shown for the first time that proteasomes isolated from the nuclei of control and induced K562 cells differ in their subunit patterns, as well as in the phosphorylation state of subunits on threonine and tyrosine residues. It has been shown for the first time that trypsin- and chymotrypsin-like, and the endoribonuclease activities of nuclear 26S proteasomes are affected under influence of DR on K562 cells. Treatment of K562 cells with DR leads to modification of zeta/alpha5 and iota/alpha6 proteasomal subunits associated with RNase activity of proteasomes. These findings confirm our hypothesis about so-called reprogramming of nuclear proteasomes population in undergoing apoptosis K562 cells which is manifested by changes in proteasomal composition, phosphorylation state, and enzymatic activities during the programmed cell death.  相似文献   

13.
The yeast (Saccharomyces cerevisiae) 26S proteasome consists of the 19S regulatory particle (19S RP) and 20S proteasome subunits. We detected comprehensively co‐ and post‐translational modifications of these subunits using proteomic techniques. First, using MS/MS, we investigated the N‐terminal modifications of three 19S RP subunits, Rpt1, Rpn13, and Rpn15, which had been unclear, and found that the N‐terminus of Rpt1 is not modified, whereas that of Rpn13 and Rpn15 is acetylated. Second, we identified a total of 33 Ser/Thr phosphorylation sites in 15 subunits of the proteasome. The data obtained by us and other groups reveal that the 26S proteasome contains at least 88 phospho‐amino acids including 63 pSer, 23 pThr, and 2 pTyr residues. Dephosphorylation treatment of the 19S RP with λ phosphatase resulted in a 30% decrease in ATPase activity, demonstrating that phosphorylation is involved in the regulation of ATPase activity in the proteasome. Third, we tried to detect glycosylated subunits of the 26S proteasome. However, we identified neither N‐ and O‐linked oligosaccharides nor O‐linked β‐N‐acetylglucosamine in the 19S RP and 20S proteasome subunits. To date, a total of 110 co‐ and post‐translational modifications, including Nα‐acetylation, Nα‐myristoylation, and phosphorylation, in the yeast 26S proteasome have been identified.  相似文献   

14.
We investigated whether the assembly/disassembly of the 26S proteasome is regulated by phosphorylation/dephosphorylation. The regulatory complex disassembled from the 26S proteasome was capable of phosphorylating the p45/Sug1/Rpt6 subunit, suggesting that the protein kinase is activated upon dissociation of the 26S proteasome or that the phosphorylation site of p45 becomes susceptible to the protein kinase. In addition, the p45-phosphorylated regulatory complex was found to be incorporated into the 26S proteasome. When the 26S proteasome was treated with alkaline phosphatase, it was dissociated into the 20S proteasome and the regulatory complex. Furthermore, the p45 subunit and the C3/alpha2 subunit were cross-linked with DTBP, whereas these subunits were not cross-linked by dephosphorylating the 26S proteasome. These results indicate that the 26S proteasome is disassembled into the constituent subcomplexes by dephosphorylation and that it is assembled by phosphorylation of p45 by a protein kinase, which is tightly associated with the regulatory complex. It was also revealed that the p45 subunit is directly associated with the 20S proteasome alpha-subunit C3 in a phosphorylation-dependent manner.  相似文献   

15.
In eukaryotic cells the population of proteasomes is heterogeneous. Here we have shown that proteasomes from nuclei and cytoplasm of rat liver cells differ in their subunit patterns. The subunit pattern of alpha-RNP differs from that of proteasomes, however, alpha-RNP particles contain the number of 26S proteasome subunits. Moreover, the proteasomes contain subunits of alpha-RNP. We have shown for the first time that nuclear proteasomes and alpha-RNP are hyperphosphorylated on threonine residues. Differences in phosphorylation state of subunits of nuclear and cytoplasmic proteasomes and alpha-RNP on threonine and tyrosine residues have been revealed. A suggestion is put forward that hyperphosphorylation of subunits may determine nuclear localization of these complexes in rat liver cells. The results obtained suggest that a highly specialized system of protein kinases and phosphatases may be involved in the regulation of phosphorylation state of different populations of proteasomes and alpha-RNP in rat liver cells.  相似文献   

16.
17.
The induction of apoptosis in K562 cells by doxorbuicin was used as a model for studying changes of the subunit composition, phosphorylation state, and enzymatic activities of nuclear proteasomes undergoing programmed cell death. The proteasomes isolated from nuclei of the control and induced K562 cells have been shown to differ in their subunit composition, as well as in the phosphorylation state of subunits at threonine and tyrosine residues. Changes of the trypsin-and chymotrypsin-like, as well as endoribonuclease, activities of proteasomes under the doxorubicin action were revealed. After the induction of apoptosis in K562 cells by doxorubicin, we observed a modification of the RNase activity-associated proteasome subunits zeta/α5 and iota/α6. These results argue in favor of changes of proteasomal subunit composition, enzymatic activities, and the phosphorylation state, i.e., of the reprogramming of nuclear proteasome population, after the induction of apoptosis in K562 cells.  相似文献   

18.
M Tokumoto  R Horiguchi  Y Nagahama  T Tokumoto 《Gene》1999,239(2):301-308
The proteasomes are large, multi-subunit particles that act as the proteolytic machinery for most of the regulated intracellular protein degradation in eukaryotic cells. To investigate the regulatory mechanism for the 26S proteasome in cell-cycle events, we purified this proteasome from immature and mature oocytes, and compared its subunits. Immunoblot analysis of 26S proteasomes showed a difference in the subunit of the 20S proteasome. A monoclonal antibody, GC3beta, cross-reacted with two bands in the 26S proteasome from immature oocytes (in G2-phase); however, the upper band was absent in the 26S proteasome from mature oocytes (in M-phase). These results suggest that changes in the subunits of 26S proteasomes are involved in the regulation of the meiotic cell cycle. Here we describe the molecular cloning of one of the alpha subunits of the 20S proteasome from a Xenopus ovarian cDNA library using an anti-GC3beta monoclonal antibody. From the screening, two types of cDNA are obtained, one 856bp, the other 984bp long. The deduced amino-acid sequences comprise 247 and 248 residues, respectively. These deduced amino-acid sequences are highly homologous to those of alpha4 subunits of other vertebrates. Phosphatase treatment of 26S proteasome revealed the upper band to be a phosphorylated form of the lower band. These results suggest that a part of the alpha4 subunit of the Xenopus 20S proteasome, alpha4_xl, is phosphorylated in G2-phase and dephosphorylated in M-phase.  相似文献   

19.
Proteasomes function as the main nonlysosomal machinery of intracellular proteolysis and are involved in the regulation of the majority of important cellular processes. Despite the considerable progress that has been made in understanding the functioning of proteasomes, some issues (in particular, the RNase activity of these ribonucleoprotein complexes and its regulation) remain poorly investigated. In this study, we found to several proteins with electrophoretic mobility that corresponds to that of 20S subunits of the core proteasome complex exhibit endoribonuclease activity with respect to the sense and antisense sequences of the c-myc mRNA 3′-UTR. Mass-spectrometric analysis of tryptic hydrolysates of these proteins showed that the samples contained 20S proteasome subunits—α1 (PSMA6), α5 (PSMA5), α6 (PSMA1), and α7 (PSMA3). A number of new phosphorylation sites of α1 (PSMA6) and α7 (PSMA3) subunits were found, and a form of α5 (PSMA5) subunit with a deletion of 20 N-terminal amino-acid residues was identified. The observed differences in the manifestation of endonuclease activity by individual subunits are apparently due to posttranslational modifications of these proteins (in particular, phosphorylation). It was shown that the specificity of RNase activity changes upon proteasome dephosphorylation and under the influence of Ca2+ and Mg2+ cations. It is concluded that posttranslational modifications of proteasome subunits affect the specificity of their RNase activity.  相似文献   

20.
The 26S proteasome complex plays a major role in the non-lysosomal degradation of intracellular proteins. Purified 26S proteasomes give a pattern of more than 40 spots on 2D-PAGE gels. The positions of subunits have been identified by mass spectrometry of tryptic peptides and by immunoblotting with subunit-specific antipeptide antibodies. Two-dimensional polyacrylamide gel electrophoresis of proteasomes immunoprecipitated from [32P]phosphate-labelled human embryo lung L-132 cells revealed the presence of at least three major phosphorylated polypeptides among the regulatory subunits as well as the C8 and C9 components of the core 20S proteasome. Comparison with the positions of the regulatory polypeptides revealed a minor phosphorylated form to be S7 (MSS1). Antibodies against S4, S6 (TBP7) and S12 (MOV34) all cross-reacted at the position of major phosphorylated polypeptides suggesting that several of the ATPase subunits may be phosphorylated. The phosphorylation of S4 was confirmed by double immunoprecipitation experiments in which 26S proteasomes were immunoprecipitated as above and dissociated and then S4 was immunoprecipitated with subunit-specific antibodies. Antibodies against the non-ATPase subunit S10, which has been suggested by others to be phosphorylated, did not coincide with the position of a phosphorylated polypeptide. Some differences were observed in the 2D-PAGE pattern of proteasomes immunoprecipitated from cultured cells compared to purified rat liver 26S proteasomes suggesting possible differences in subunit compositions of 26S proteasomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号