首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sphingomyelin (SM) hydrolysis in the gut has implications in colonic tumorigenesis and cholesterol absorption. It is triggered by intestinal alkaline sphingomyelinase (Alk-SMase) that is present in the intestinal mucosa and content. The mechanism by which the enzyme is released into the lumen is not clear. We studied whether trypsin can dissociate Alk-SMase from the mucosa and affect its activity. During luminal perfusion of rat intestine, addition of trypsin to the buffer increased Alk-SMase activity in the perfusate output by about threefold. Treating COS-7 cells transfected with Alk-SMase cDNA with trypsin increased the SMase activity in the medium and reduced that in the cell lysate dose dependently. The appearance of Alk-SMase in the perfusate and culture medium was confirmed by Western blot analysis. The effect of trypsin was blocked by trypsin inhibitor, and neither chymotrypsin nor elastase had a similar effect. We also expressed the full length and COOH-terminal truncated Alk-SMase in COS-7 cells and found that the activity of the full-length enzyme is mainly in the cells, whereas that of the truncated form is mainly in the medium. Both forms were active, but only the activity of the full-length Alk-SMase was enhanced by trypsin. By linking a poly-His tag to the constructed cDNA, we found that the first tryptic site Arg440 upstream of the signal anchor was attacked by trypsin. In conclusion, trypsin cleaves the Alk-SMase at the COOH terminal, releases it from mucosa, and meanwhile enhances its activity. The findings indicate a physiological role of trypsin in SM digestion.  相似文献   

2.
K M Rigtrup  D E Ong 《Biochemistry》1992,31(11):2920-2926
Retinol esterified with long-chain fatty acids is a common dietary source of vitamin A. Hydrolysis of these esters in the lumen of the small intestine is required prior to absorption. Bile salt-stimulated retinyl esterase activity was present with purified rat intestinal brush border membrane, with the maximum rate of ester hydrolysis at approximately pH 8, the physiological luminal pH. Taurocholate, a trihydroxy bile salt, stimulated hydrolysis of short-chain fatty acyl retinyl esters more than hydrolysis of long-chain fatty acyl esters. Deoxycholate, a dihydroxy bile salt, primarily stimulated hydrolysis of long-chain esters. Calculated Kms of 0.74 microM for retinyl palmitate (16:0) hydrolysis and 9.6 microM for retinyl caproate (6:0) hydrolysis suggested the presence of two separate activities. Consistent with that, the activity responsible for retinyl caproate hydrolysis could be inactivated to a greater degree than retinyl palmitate hydrolysis by preincubation of the brush border membrane at 37 degrees C for extended times. Brush border membrane from animals who had undergone common duct ligation 48 h prior to tissue collection showed little ability to hydrolyze retinyl caproate but retained 70% of retinyl palmitate hydrolytic activity, compared to sham-operated controls. Thus, two distinguishable retinyl esterase activities were recovered with purified brush border membranes. One apparently originated from the pancreas, was stimulated by trihydroxy bile salts, and preferentially hydrolyzed short-chain retinyl esters, properties similar to cholesterol ester hydrolase, known to bind to the brush border. The other was intrinsic to the brush border, stimulated by both trihydroxy and dihydroxy bile salts, and preferentially hydrolyzed long-chain retinyl esters, providing the majority of activity of the brush border against dietary retinyl esters.  相似文献   

3.
Alkaline sphingomyelinase (alk-SMase) hydrolyzes dietary sphingomyelin and generates sphingolipid messengers in the gut. In the present study, we purified the enzyme, identified a part of the amino acid sequence, and found a cDNA in the GenBank coding for the protein. The cDNA contains 1841 bp, and the open reading frame encodes 458 amino acids. Transient expression of the cDNA linked to a Myc tag in COS-7 cells increased alk-SMase activity in the cell extract by 689-fold and in the medium by 27-fold. High activity was also identified in the anti-Myc immunoprecipitated proteins and the proteins cross-reacted with anti-human alk-SMase. Northern blotting of human intestinal tissues found high levels of alk-SMase mRNA in the intestine and liver. The amino acid sequence shared no similarity with acid and neutral SMases but was related to the ecto-nucleotide phosphodiesterase (NPP) family with 30-36% identity to human NPPs. Alk-SMase has a predicted signal peptide domain at the N terminus and a signal anchor domain at the C terminus. The ion-binding sites and the catalytic residue of NPPs were conserved, but the substrate specificity domain was modified. Alk-SMase had no detectable nucleotidase activity, but its activity against sphingomyelin could be inhibited by orthovanadate, imidazole, and ATP. In contrast to NPPs, alk-SMase activity was not stimulated by divalent metal ions but inhibited by Zn2+. Differing from NPP2, the alk-SMase cleaved phosphocholine but not choline from lysophosphatidylcholine. Phylogenetic tree indicated that the enzyme is a new branch derived from the NPP family. Two cDNA sequences of mouse and rat that shared 83% identity to human alk-SMase were identified in the GenBank. In conclusion, we identified the amino acid and cDNA sequences of human intestinal alk-SMase, and found that it is a novel ecto-enzyme related to the NPP family with specific features essential for its SMase activity.  相似文献   

4.
Alkaline sphingomyelinase (alk-SMase) is present in the intestinal tract and additionally human bile. It hydrolyses sphingomyelin in both intestinal lumen and the mucosal membrane in a specific bile salt dependent manner. The enzyme was discovered 36 years ago but got real attention only in the last decade, when sphingomyelin metabolism was realized to be a source of multiple lipid messengers, and when dietary sphingomyelin was found to inhibit colonic tumorigenesis in animals. The enzyme shares no structural similarity with other SMases and belongs to the nucleotide pyrophosphatase/phosphodiesterase family. The enzyme is of specific properties, such as bile salt dependency, trypsin resistance, high stability, and tissue specific expression. In the colon, the enzyme may play antiproliferative and antiinflammatory roles through generating ceramide, reducing the formation of lysophosphatidic acid, and inactivating platelet-activating factor. The enzyme is down regulated in human long-standing ulcerative colitis and colonic adenocarcinoma, and mutation of the enzyme has been found in colon cancer cells. In the small intestine, alk-SMase is the key enzyme for sphingomyelin digestion. The hydrolysis of sphingomyelin may affect the cholesterol uptake and have impact on sphingomyelin levels in plasma lipoproteins. The review summarizes the new information of alk-SMase from biochemical, cell and molecular biological studies in the last decade and evaluates its potential implications in development of colon cancer, inflammatory bowel diseases, and atherosclerosis.  相似文献   

5.
In the days following high-dose radiation exposure, damage to small intestinal mucosa is aggravated by changes in the bile acid pool reaching the gut. Intestinal bile acid malabsorption, as described classically, may be associated with altered hepatic bile acid biosynthesis, which was the objective of this work. The activity of the main rate-limiting enzymes implicated in the bile acid biosynthesis were evaluated in the days following an 8-Gy gamma(60)Co total body irradiation of rats, with concomitant determination of biliary bile acid profiles and intestinal bile acid content. Modifications of biliary bile acid profiles, observed as early as the first post-irradiation day, were most marked at the third and fourth day, and resulted in an increased hydrophobicity index. In parallel, the intestinal bile acids' content was enhanced and hepatic enzymatic activities leading to bile acids were changed. A marked increase of sterol 12 alpha-hydroxylase and decrease of oxysterol 7 alpha-hydroxylase activity was observed at day 3, whereas both cholesterol 7 alpha-hydroxylase and oxysterol 7 alpha-hydroxylase activities were decreased at day 4 after irradiation. These results show, for the first time, radiation-induced modifications of hepatic enzymatic activities implicated in bile acid biosynthesis and suggest that they are mainly a consequence of radiation-altered intestinal absorption, which induces a physiological response of the enterohepatic bile acid recirculation.  相似文献   

6.
D Lombardo  P Deprez  O Guy 《Biochimie》1980,62(7):427-432
Human pancreatic carboxyl ester hydrolase is shown to catalyse the esterification of cholesterol and lipid-soluble vitamins A, E and D3 with oleic acid. The acitivity requires the presence of bile salts, and the trihydroxylated or the 3 alpha, 7 alpha dihydroxylated bile salts are better activators than the 3 alpha, 12 alpha dihydroxylated bile salts. The hydrolyzing and synthetizing activities of human pancreatic carboxyl ester hydrolase are separated by a large pH range since the synthesis of cholesterol esters is optimal at pH 5.25 and the hydrolysis of cholesterol and vitamin E esters is optimal at pH 8.0. From the comparison of the catalytic constants determined for the hydrolyzing and synthetizing activities and from the pH dependence of the two activities, it appears that human carboxyl ester hydrolase plays an important part in the intestinal lumen. The role of the enzyme in the esterification of cholesterol and lipid-soluble vitamins is questionable.  相似文献   

7.
Bile acids entering into enterohepatic circulating are primary acids synthesized from cholesterol in hepatocyte. They are secreted actively across canalicular membrane and carried in bile to gallbladder, where they are concentrated during digestion. About 95 % BAs are actively taken up from the lumen of terminal ileum efficiently, leaving only approximately 5 % (or approximately 0.5 g/d) in colon, and a fraction of bile acids are passively reabsorbed after a series of modifications in the human large intestine including deconjugation and oxidation of hydroxy groups. Bile salts hydrolysis and hydroxy group dehydrogenation reactions are performed by a broad spectrum of intestinal anaerobic bacteria. Next, hepatocyte reabsorbs bile acids from sinusoidal blood, which are carried to liver through portal vein via a series of transporters. Bile acids (BAs) transporters are critical for maintenance of the enterohepatic BAs circulation, where BAs exert their multiple physiological functions including stimulation of bile flow, intestinal absorption of lipophilic nutrients, solubilization, and excretion of cholesterol. Tight regulation of BA transporters via nuclear receptors (NRs) is necessary to maintain proper BA homeostasis. In conclusion, disturbances of enterohepatic circulation may account for pathogenesis of gallstones diseases, including BAs transporters and their regulatory NRs and the metabolism of intestinal bacterias, etc.  相似文献   

8.
Neutral ceramidase activity has previously been identified in the intestinal mucosa and gut lumen and postulated to be important in the digestion of sphingolipids. It is found throughout the intestine but has never been fully characterized. We have purified rat intestinal neutral ceramidase from an eluate obtained by perfusing the intestinal lumen with 0.9% NaCl and 3 mM sodium taurodeoxycholate. Using a combination of acetone precipitation and ion-exchange, hydrophobic-interaction, and gel chromatographies, we obtained a homogenous enzyme protein with a molecular mass of approximately 116 kDa. The enzyme acts on both [14)]octanoyl- and [14C]palmitoyl-sphingosine in the presence of glycocholic and taurocholic acid and the bile salt analog 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate but is inhibited by 2 mM or more of other bile salts. It is a glycosylated protein stable to trypsin and chymotrypsin exposure, is not influenced by Ca2+, Mg2+, or Mn2+, and is inhibited by Zn2+ and Cu2+. Mass fragmentographic analysis identified 12 fragments covering 17.5% of the sequence for neutral/alkaline ceramidase 2 purified (Mitsutake S, Tani M, Okino N, Mori K, Ichinose S, Omori A, Iida H, Nakamura T, and Ito M. J Biol Chem 276: 26249-262459, 2001) from rat kidney and located in apical membrane of renal tubular cells. Intestinal and kidney ceramidases also have similar molecular mass and ion dependence. Intestinal ceramidase thus is a neutral ceramidase 2 released by bile salts and resistant to pancreatic proteases. It is well suited to metabolize ceramide formed from dietary and brush border sphingolipids to generate other bioactive sphingolipid messengers.  相似文献   

9.
10.
The liver and intestinal lumen are both important sites in the entero-hepatic circulation of bile salts. Lithocholate, a secondary bile acid and a potent hepatotoxin is probably detoxified in man predominantly by hepatic sulphation. Other sites may also be important. Because steroid sulphating enzymes exist throughout the gastrointestinal tract we have examined the invitro lithocholate sulphation capacity of healthy and diseased ileal and colonic mucosal samples using radio-isotope tracer techniques. Lithocholate sulphation was demonstrated in healthy and diseased ileal mucosa but not in the colonic mucosal samples studied. This new site for lithocholate metabolism acts as a further protective mechanism to prevent toxic unsulphated lithocholate reaching the liver. These findings suggest that the intestinal mucosa may have an important role in the metabolism of other bile acids.  相似文献   

11.
Secondary bile acids, produced solely by intestinal bacteria, can accumulate to high levels in the enterohepatic circulation of some individuals and may contribute to the pathogenesis of colon cancer, gallstones, and other gastrointestinal (GI) diseases. Bile salt hydrolysis and hydroxy group dehydrogenation reactions are carried out by a broad spectrum of intestinal anaerobic bacteria, whereas bile acid 7-dehydroxylation appears restricted to a limited number of intestinal anaerobes representing a small fraction of the total colonic flora. Microbial enzymes modifying bile salts differ between species with respect to pH optima, enzyme kinetics, substrate specificity, cellular location, and possibly physiological function. Crystallization, site-directed mutagenesis, and comparisons of protein secondary structure have provided insight into the mechanisms of several bile acid-biotransforming enzymatic reactions. Molecular cloning of genes encoding bile salt-modifying enzymes has facilitated the understanding of the genetic organization of these pathways and is a means of developing probes for the detection of bile salt-modifying bacteria. The potential exists for altering the bile acid pool by targeting key enzymes in the 7alpha/beta-dehydroxylation pathway through the development of pharmaceuticals or sequestering bile acids biologically in probiotic bacteria, which may result in their effective removal from the host after excretion.  相似文献   

12.
The ubiquitous sphingophospholipid sphingomyelin (SM) can be hydrolysed in human cells to ceramide by different sphingomyelinases (SMases). These enzymes exert a dual role, enabling not only the turnover of membrane SM and the degradation of exogenous (lipoprotein) SM, but also the signal-induced generation of the lipid second messenger ceramide. This review focuses on the function(s) of the different SMases in living cells. While both lysosomal and non-lysosomal pathways that ensure SM hydrolysis in intact cells can be distinguished, the precise contribution of each of these SM-cleaving enzymes to the production of ceramide as a signalling molecule remains to be clarified.  相似文献   

13.
Lactobacilli and bile salt hydrolase in the murine intestinal tract.   总被引:11,自引:7,他引:4       下载免费PDF全文
Mice that have a complex intestinal microflora but that do not harbor lactobacilli were used to determine the contribution of lactobacilli to the total bile salt hydrolase activity in the murine intestinal tract. Bile salt hydrolase activity in the ileal contents of these mice was reduced 86% in the absence of lactobacilli and by greater than 98% in the absence of lactobacilli and enterococci compared with samples from conventional mice. Bile salt hydrolase activities were lower in ileal and cecal contents from lactobacillus-free mice colonized with enterococci than in samples from lactobacillus-free mice colonized with lactobacilli. Bile salt hydrolase activity in the duodena, jejuna, ilea, and ceca of reconstituted lactobacillus-free mice colonized by lactobacilli was similar to that in samples from the intestinal tracts of conventional mice. We conclude from these studies that lactobacilli are the main contributors to total bile salt hydrolase activity in the murine intestinal tract.  相似文献   

14.
The specific activity (concentration) of microsomal HMG CoA reductase of intestinal crypt cells was studied in rats fed sterols and bile acids, either singly or in combination. It was found that the basal activity of the reductase was not suppressed by the administration of relatively large amounts of bile acid (taurocholate or taurochenodeoxycholate). Bile acids reduced the specific activity of the reductase only in rats in which the activity of the enzyme had first been enhanced by biliary diversion or by sitosterol feeding. In addition, bile acid feeding abolished the diurnal elevation of reductase activity that normally occurs between midnight and 2 a.m. In no case did bile acids reduce enzyme activity below basal levels. A pronounced (60%) reduction of intestinal HMG CoA reductase activity was observed in rats fed cholesterol and bile acid in combination. This reduction in activity could not be ascribed to an increase in intestinal bile acid flux but was associated with an increase in sterol concentration within the intestinal crypt cells. These results indicate that dietary sterols and bile acids both play a role in the regulation of intestinal HMG CoA reductase.  相似文献   

15.
Lactobacilli and bile salt hydrolase in the murine intestinal tract   总被引:8,自引:0,他引:8  
Mice that have a complex intestinal microflora but that do not harbor lactobacilli were used to determine the contribution of lactobacilli to the total bile salt hydrolase activity in the murine intestinal tract. Bile salt hydrolase activity in the ileal contents of these mice was reduced 86% in the absence of lactobacilli and by greater than 98% in the absence of lactobacilli and enterococci compared with samples from conventional mice. Bile salt hydrolase activities were lower in ileal and cecal contents from lactobacillus-free mice colonized with enterococci than in samples from lactobacillus-free mice colonized with lactobacilli. Bile salt hydrolase activity in the duodena, jejuna, ilea, and ceca of reconstituted lactobacillus-free mice colonized by lactobacilli was similar to that in samples from the intestinal tracts of conventional mice. We conclude from these studies that lactobacilli are the main contributors to total bile salt hydrolase activity in the murine intestinal tract.  相似文献   

16.
Bile salts are potent detergents and can disrupt cellular membranes, which causes cholestasis and hepatocellular injury. However, the mechanism for the resistance of the canalicular membrane against bile salts is not clear. Phosphatidylethanolamine (PE) is converted to phosphatidylcholine (PC) in the liver by phosphatidylethanolamine N-methyltransferase (PEMT). In this study, to investigate the effect of PEMT expression on the resistance to bile salts, we established an LLC-PK1 cell line stably expressing PEMT. By using enzymatic assays, we showed that the expression of PEMT increased the cellular PC content, lowered the PE content, but had no effect on the sphingomyelin content. Consequently, PEMT expression led to reductions in PE/PC and sphingomyelin/PC ratios. Mass spectrometry demonstrated that PEMT expression increased the levels of PC species containing longer acyl chains and almost all ether-linked PC species. PEMT expression enhanced the resistance to duramycin and lysenin, suggesting decreased ratios of PE and sphingomyelin in the apical membrane, respectively. In addition, SEM revealed that PEMT expression increased the diameter of microvilli. The expression of PEMT resulted in reduced resistance to unconjugated bile salts, but surprisingly in increased resistance to conjugated bile salts, which might be attributable to modifications of the phospholipid composition and/or structure in the apical membrane. Because most bile salts exist as conjugated forms in the bile canaliculi, PEMT may be important in the protection of hepatocytes from bile salts and in cholestatic liver injury.  相似文献   

17.
18.
Bile salts and calcium absorption   总被引:5,自引:2,他引:3       下载免费PDF全文
1. The study of the effect of bile salts on enhancing calcium absorption in the rachitic chick has been extended to bile salts not present in chick bile, e.g. glycine conjugates and bile alcohol sulphates. 2. Bile and bile salts cause an increase in calcium absorption from sparingly soluble calcium hydrogen phosphate when compared with a suspension of calcium hydrogen phosphate in saline. 3. If the bile ducts of normal rats are tied the absorption of calcium from calcium hydrogen phosphate decreases but can be restored by giving bile salts with the calcium salt. 4. Bile salts increase solubility in water of the sparingly soluble calcium salts, phytate and phosphate at pH values between 6 and 8. 5. Bile salts increase the solubility in lipid solvents of calcium in approximately the same proportion as they increase the absorption of calcium from the gut. 6. The physiological role of bile in calcium absorption and its mode of action are discussed.  相似文献   

19.
An important feature of the intestinal microbiota, particularly in the case of administered probiotic microorganisms, is their resistance to conditions in the gastrointestinal tract, particularly tolerance to and growth in the presence of bile salts. Bacteria can use several defence mechanisms against bile, including special transport mechanisms, the synthesis of various types of surface proteins and fatty acids or the production of exopolysaccharides. The ability to enzymatically hydrolyse bile salts occurs in a variety of bacteria. Choloylglycine hydrolase (EC 3.5.1.24), a bile salt hydrolase, is a constitutive intracellular enzyme responsible for the hydrolysis of an amide bond between glycine or taurine and the steroid nucleus of bile acids. Its presence was demonstrated in specific microorganisms from several bacterial genera (Lactobacillus spp., Bifidobacterium spp., Clostridium spp., Bacteroides spp.). Occurrence and gene arrangement encoding this enzyme are highly variable in probiotic microorganisms. Bile salt hydrolase activity may provide the possibility to use the released amino acids by bacteria as sources of carbon and nitrogen, to facilitate detoxification of bile or to support the incorporation of cholesterol into the cell wall. Deconjugation of bile salts may be directly related to a lowering of serum cholesterol levels, from which conjugated bile salts are synthesized de novo. Furthermore, the ability of microorganisms to assimilate or to bind ingested cholesterol to the cell wall or to eliminate it by co-precipitation with released cholic acid was also documented. Some intestinal microflora produce cholesterol reductase that catalyses the conversion of cholesterol to insoluble coprostanol, which is subsequently excreted in faeces, thereby also reducing the amount of exogenous cholesterol.  相似文献   

20.
胆汁酸在人体的胆固醇代谢、脂质消化、宿主-微生物相互作用及通路调控等方面具有重要作用。大多数胆汁酸(95%)通过肝肠循环重回收,还有约5%作为结肠内细菌生物转化的基质。胆汁酸微生物转化中涉及的各种酶可通过肠道细菌培养而被验证,证明其有种属特异性。最近,生物信息学方法揭示了这些酶有多种亚型。因此,在胆汁酸转化中肠道菌群发挥重要的作用,微生物群落结构和功能对次级胆汁酸在胆汁酸池中的分布有深刻影响。研究认为胆汁酸和胆汁酸池的组成与几种疾病有关,包括炎症性肠病、代谢综合征和结直肠癌。最近,人们的重点放在肠道菌群如何改变胆汁酸进而导致或减轻某些疾病。本文总结了肠道菌群、胆汁酸生物转化和疾病状态之间的相互作用的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号