首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heme-thiolate proteins   总被引:1,自引:0,他引:1  
Cytochrome P450 was the first hemoprotein found to have a thiolate anion as the axial ligand of the heme. Several other heme-thiolate proteins, including nitric oxide synthase, were later found in animals, plants, and microorganisms. Both cytochrome P450 and nitric oxide synthase, two major members of the heme-thiolate protein family, catalyze monooxygenase reactions, but the physiological functions of other heme-thiolate proteins are apparently highly diverse. Chloroperoxidase of a mold, Caldaryomyces fumago, catalyzes a haloperoxidase reaction. CooA of a bacterium, Rhodospirillum rubrum, and heme-regulated eIF2α kinase of animals function as the sensors for carbon monoxide and nitric oxide, respectively, to elicit biological responses to these gases. The role of heme in the enzymatic activity of cystathionine β-synthase is still unknown. It is likely that more heme-thiolate proteins with diversified functions will be found in various organisms in the future.  相似文献   

2.
Microbial P450 enzymes in biotechnology   总被引:9,自引:0,他引:9  
Oxidations are key reactions in chemical syntheses. Biooxidations using fermentation processes have already conquered some niches in industrial oxidation processes since they allow the introduction of oxygen into non-activated carbon atoms in a sterically and optically selective manner that is difficult or impossible to achieve by synthetic organic chemistry. Biooxidation using isolated enzymes is limited to oxidases and dehydrogenases. Surprisingly, cytochrome P450 monooxygenases have scarcely been studied for use in biooxidations, although they are one of the largest known superfamilies of enzyme proteins. Their gene sequences have been identified in various organisms such as humans, bacteria, algae, fungi, and plants. The reactions catalyzed by P450s are quite diverse and range from biosynthetic pathways (e.g. those of animal hormones and secondary plant metabolites) to the activation or biodegradation of hydrophobic xenobiotic compounds (e.g. those of various drugs in the liver of higher animals). From a practical point of view, the great potential of P450s is limited by their functional complexity, low activity, and limited stability. In addition, P450-catalyzed reactions require a constant supply of NAD(P)H which makes continuous cell-free processes very expensive. Quite recently, several groups have started to investigate cost-efficient ways that could allow the continuous supply of electrons to the heme iron. These include, for example, the use of electron mediators, direct electron supply from electrodes, and enzymatic approaches. In addition, methods of protein design and directed evolution have been applied in an attempt to enhance the activity of the enzymes and improve their selectivity. The promising application of bacterial P450s as catalyzing agents in biocatalytic reactions and recent progress made in this field are both covered in this review.  相似文献   

3.
Cytochrome P450 enzymes primarily catalyze mixed-function oxidation reactions, plus some reductions and rearrangements of oxygenated species, e.g. prostaglandins. Most of these reactions can be rationalized in a paradigm involving Compound I, a high-valent iron-oxygen complex (FeO3+), to explain seemingly unusual reactions, including ring couplings, ring expansion and contraction, and fusion of substrates. Most P450s interact with flavoenzymes or iron-sulfur proteins to receive electrons from NAD(P)H. In some cases, P450s are fused to protein partners. Other P450s catalyze non-redox isomerization reactions. A number of permutations on the P450 theme reveal the diversity of cytochrome P450 form and function.  相似文献   

4.
Cytochromes P450 (CYPs) belong to the superfamily of heme b containing monooxygenases with currently more than 21,000 members. These enzymes accept a vast range of organic molecules and catalyze diverse reactions. These extraordinary capabilities of CYP systems that are unmet by other enzymes make them attractive for biotechnology. However, the complexity of these systems due to the need of electron transfer from nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) via redox partner proteins for the initial hydroxylation step limits a broader technical implementation of CYP enzymes. There have been several reviews during the past years tackling the potential CYPs for synthetic application. The aim of this review is to give a critical overview about possibilities and chances for application of these interesting catalysts as well as to discuss drawbacks and problems related to their use. Solutions to overcome these limitations will be demonstrated, and several selected examples of successful CYP applications under industrial conditions will be reviewed.  相似文献   

5.
Plant systems utilize a diverse array of cytochrome P450 monooxygenases (P450s) in their biosynthetic and detoxification pathways. The classic forms of these enzymes are heme-dependent mixed function oxidases that utilize NADPH or NADH and molecular oxygen to produce functionalized organic products. The nonclassical forms are monooxygenases that either do not utilize flavoproteins for dioxygen activation or fail to incorporate molecular oxygen into their final product. Biosynthetic P450s play paramount roles in the synthesis of lignin intermediates, sterols, terpenes, flavonoids, isoflavonoids, furanocoumarins, and a variety of other secondary plant products. Other catabolic P450s metabolize toxic herbicides and insecticides into nontoxic products or, conversely, activate nontoxic substances into toxic products. Biochemical and molecular characterizations on a number of plant P450s have indicated that the relationships between these heme proteins and their substrates are at least as complex as those that exist in mammalian systems. Examples now exist of plant P450s that metabolize: a narrow range of substrates to yield different products, a single substrate to yield different products, multiple substrates to yield the same product, or a single substrate sequentially to yield discrete intermediates in the biosynthesis of a single product. Extensive divergence of catalytic site as well as noncatalytic site residues accounts for the high degree of primary structure variation in the P450 gene superfamily and the diverse array of substrates synthesized and/or detoxified by these proteins. Classic P450s still retain a highly conserved F-G-R-C-G motif in their catalytic site and conserved amino acids in their oxygen binding pocket; nonclassical P450s diverge at several of these positions. A broad range of cloning and transient expression strategies are suitable for plant P450 studies and these have allowed for the isolation and characterization of a number of P450 cDNAs and genes. Because many of these sequences have been cloned only recently, much remains to be learned about the substrate specificities of P450 reactions in plants and the mechanisms by which their genes are regulated.  相似文献   

6.
Cytochrome P450 monooxygenases are versatile biocatalysts that introduce oxygen into a vast range of molecules. These enzymes catalyze diverse reactions in a regio- and stereoselective manner, and their properties have been used for drug development, bioremediation and the synthesis of fine chemicals and other useful compounds. However, the potential of P450 monooxygenases has not been fully exploited; there are some drawbacks limiting the broader implementation of these catalysts for commercial needs. Protein engineering has produced P450 enzymes with widely altered substrate specificities, substantially increased activity and higher stability. Furthermore, electrochemical and enzymatic approaches for the replacement or regeneration of NAD(P)H have been developed, enabling the more cost-effective use of P450 enzymes. In this review, we focus on the aspects relevant to the synthetic applications of P450 enzymes and their optimization for commercial needs.  相似文献   

7.
The transition element molybdenum is essential for (nearly) all organisms and occurs in more than 30 enzymes catalyzing diverse redox reactions; however, only three Mo-enzymes have been found in plants so far. (1) Nitrate reductase catalyzes the key step in inorganic nitrogen assimilation, (2) aldehyde oxidase(s) recently have been shown to catalyze the last step in the biosynthesis of the phytohormones indole acetic acid and abscisic acid, respectively, and (3) xanthine dehydrogenase is involved in purine catabolism. These enzymes are homodimeric proteins harboring an electron transport chain that involves different prosthetic groups (FAD, heme, or Fe-S, Mo). Among different Mo-enzymes, the alignment of amino acid sequences helps to define regions that are well conserved (domains) and other regions that are highly variable in sequence (interdomain hinge regions). The existence of additional plant Mo-enzymes (like sulfite oxidase) also has to be considered. In this review we focus on structure-function relationships and stress the functional importance of the enzymes for the plant. With the exception of bacterial nitrogenase, Mo-enzymes share a similar pterin compound at their catalytic sites, the molybdenum cofactor. Molybdenum itself seems to be biologically inactive unless it is complexed by the cofactor. This molybdenum cofactor combines with diverse apoproteins where it is responsible for the correct anchoring and positioning of the Mo-center within the holo-enzyme so that the Mo-center can interact with other components of the enzyme's electron transport chain. The organic moiety of the molybdenum cofactor is a unique pterin named molybdopterin. The core structure of molybdopterin is conserved in all organisms. Accordingly, its biosynthetic pathway seems to be conserved because a similar set of cofactor genes has been found in bacteria and higher plants. We describe a model for the biosynthesis of the plant molybdenum cofactor involving the complex interaction of seven proteins.  相似文献   

8.
The catalysis of cytochrome P450s requires two-electron donation for the activation of an oxygen molecule. Here, we report the enzymatic catalysis of cytochrome P450, CYP119A2 (P450st), from a thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7, with NAD(P)H as an electron donor and no redox partners and the crystallographic analysis of P450st at high resolution. P450st can catalyse styrene epoxidation with either NADH or NADPH as an electron donor. The P450st reaction with NADH exhibited a sequential mechanism. X-ray crystallography at a resolution of 1.94 ? revealed a sufficiently large heme pocket for NAD(P)H binding and a novel contiguous channel from the active site to bulk solvent in the distal heme pocket. The narrow channel may transfer protons or water to the heme pocket even when a bulky compound, such as NAD(P)H, binds in the pocket. In addition, the F/G loop region (Leu151-Glu156), located around the substrate channel, was deleted in the mutant and constructed to improve the accessibility of NAD(P)H to the heme pocket. Kinetic properties of the Δ151-156 mutant were compared with those of the wild-type P450st. The K(m) value of the mutant was about 2 times lower than that of the wild-type. The results indicated that NAD(P)H could provide the electrons for P450st within the heme pocket.  相似文献   

9.
细胞色素P450酶系与除草剂代谢   总被引:5,自引:0,他引:5  
细胞色素P450是广泛存在于动物、植物和微生物体内的一类具有混合功能的血红素氧化酶系。它不但能够催化苯丙烷类、萜类化合物和脂肪酸等内源性物质的生物合成 ,而且参与许多外源性物质包括除草剂等的生物氧化。综述了代谢除草剂的细菌、哺乳动物和植物细胞色素P450酶系 ,概述了细胞色素P450酶系参与除草剂代谢的作用方式 :脱烷基化作用、环甲基化羟基化作用和芳环的羟基化作用等。这些细胞色素P450酶系在培育除草剂抗性作物、生物安全和生物修复方面表现出了巨大的潜能  相似文献   

10.

Background  

Cytochrome P450 monooxygenases (P450s) catalyze oxidation of various substrates using oxygen and NAD(P)H. Plant P450s are involved in the biosynthesis of primary and secondary metabolites performing diverse biological functions. The recent availability of the soybean genome sequence allows us to identify and analyze soybean putative P450s at a genome scale. Co-expression analysis using an available soybean microarray and Illumina sequencing data provides clues for functional annotation of these enzymes. This approach is based on the assumption that genes that have similar expression patterns across a set of conditions may have a functional relationship.  相似文献   

11.
Plant P450 monooxygenases represent the largest family of plant proteins and the largest collection of P450s available for comparative studies and biotechnological applications. They have been shown to catalyze a diverse array of difficult chemical reactions and have demonstrated potential to be used in pharmacological, agronomic and phytoremediative applications. Central to our use of these catalytically competent enzymes is the need to understand their interactions with substrates. Because most characterized plant P450s are membrane-bound proteins that are resistant to standard X-ray and NMR structure determinations, homology modeling represents a reliable and relatively rapid alternative method for analyzing structure-function relationships and predicting substrates for many P450s that are only now being characterized. These methods, which are being widely used in mammalian P450 structure-function studies, can allow plant biologists to define critical residues interacting with substrates and, in a directed fashion, alter the reactivities of individual monooxygenases. The homology modelings that have been done on a limited number of plant P450s and the site-directed mutations that validate them indicate that current modeling and substrate docking procedures are capable of providing structural explanations for sequence variants as well as for predicting functional characteristics of undefined P450s.  相似文献   

12.
Cytochrome P450 enzymes are hemeproteins that catalyze the monooxygenation of a wide‐range of structurally diverse substrates of endogenous and exogenous origin. These heme monooxygenases receive electrons from NADH/NADPH via electron transfer proteins. The cytochrome P450 enzymes, which constitute a diverse superfamily of more than 8,700 proteins, share a common tertiary fold but < 25% sequence identity. Based on their electron transfer protein partner, cytochrome P450 proteins are classified into six broad classes. Traditional methods of protein classification are based on the canonical paradigm that attributes proteins’ function to their three‐dimensional structure, which is determined by their primary structure that is the amino acid sequence. It is increasingly recognized that protein dynamics play an important role in molecular recognition and catalytic activity. As the mobility of a protein is an intrinsic property that is encrypted in its primary structure, we examined if different classes of cytochrome P450 enzymes display any unique patterns of intrinsic mobility. Normal mode analysis was performed to characterize the intrinsic dynamics of five classes of cytochrome P450 proteins. The present study revealed that cytochrome P450 enzymes share a strong dynamic similarity (root mean squared inner product > 55% and Bhattacharyya coefficient > 80%), despite the low sequence identity (< 25%) and sequence similarity (< 50%) across the cytochrome P450 superfamily. Noticeable differences in Cα atom fluctuations of structural elements responsible for substrate binding were noticed. These differences in residue fluctuations might be crucial for substrate selectivity in these enzymes.  相似文献   

13.
The cytochrome P450 enzyme systems catalyze the metabolism of a wide variety of naturally occurring and foreign compounds by reactions requiring NADPH and O2. Cytochrome P450 also catalyzes peroxide-dependent hydroxylation of substrates in the absence of NADPH and O2. Peroxidases such as chloroperoxidase and horseradish peroxidase catalyze peroxide-dependent reactions similar to those catalyzed by cytochrome P450. The kinetic and chemical mechanisms of the NADPH and O2-supported dealkylation reactions catalyzed by P450 have been investigated and compared with those catalyzed by P450 and peroxidases when the reactions are supported by peroxides. Detailed kinetic studies demonstrated that chloroperoxidase- and horseradish peroxidase-catalyzed N-demethylations proceed by a Ping Pong Bi Bi mechanism whereas P450-catalyzed O-dealkylations proceed by sequential mechanisms. Intramolecular isotope effect studies demonstrated that N-demethylations catalyzed by P450s and peroxidases proceed by different mechanisms. Most hemeproteins investigated catalyzed these reactions via abstraction of an alpha-carbon hydrogen whereas reactions catalyzed by P-450 and chloroperoxidase proceeded via an initial one-electron oxidation followed by alpha-carbon deprotonation. 18O-Labeling studies of the metabolism of NMC also demonstrated differences between the peroxidases and P450s. Because the hemeprotein prosthetic groups of P450, chloroperoxidase, and horseradish peroxidase are identical, the differences in the catalytic mechanisms result from differences in the environments provided by the proteins for the heme active site. It is suggested that the axial heme-iron thiolate moiety in P450 and chloroperoxidase may play a critical role in determining the mechanism of N-demethylation reactions catalyzed by these proteins.  相似文献   

14.
Structure and function of enzymes in heme biosynthesis   总被引:1,自引:0,他引:1  
Tetrapyrroles like hemes, chlorophylls, and cobalamin are complex macrocycles which play essential roles in almost all living organisms. Heme serves as prosthetic group of many proteins involved in fundamental biological processes like respiration, photosynthesis, and the metabolism and transport of oxygen. Further, enzymes such as catalases, peroxidases, or cytochromes P450 rely on heme as essential cofactors. Heme is synthesized in most organisms via a highly conserved biosynthetic route. In humans, defects in heme biosynthesis lead to severe metabolic disorders called porphyrias. The elucidation of the 3D structures for all heme biosynthetic enzymes over the last decade provided new insights into their function and elucidated the structural basis of many known diseases. In terms of structure and function several rather unique proteins were revealed such as the V‐shaped glutamyl‐tRNA reductase, the dipyrromethane cofactor containing porphobilinogen deaminase, or the “Radical SAM enzyme” coproporphyrinogen III dehydrogenase. This review summarizes the current understanding of the structure–function relationship for all heme biosynthetic enzymes and their potential interactions in the cell.  相似文献   

15.
NAD(P)H-dependent oxidoreductases catalyze the reduction or oxidation of a substrate coupled to the oxidation or reduction, respectively, of a nicotinamide adenine dinucleotide cofactor NAD(P)H or NAD(P)+. NAD(P)H-dependent oxidoreductases catalyze a large variety of reactions and play a pivotal role in many central metabolic pathways. Due to the high activity, regiospecificity and stereospecificity with which they catalyze redox reactions, they have been used as key components in a wide range of applications, including substrate utilization, the synthesis of chemicals, biodegradation and detoxification. There is great interest in tailoring NAD(P)H-dependent oxidoreductases to make them more suitable for particular applications. Here, we review the main properties and classes of NAD(P)H-dependent oxidoreductases, the types of reactions they catalyze, some of the main protein engineering techniques used to modify their properties and some interesting examples of their modification and application.  相似文献   

16.
The interaction of heme nonapeptide (a proteolytic product of cytochrome c) with purified NADH:cytochrome b5 (EC 1.6.2.2) and NADPH:cytochrome P-450 (EC 1.6.2.4) reductases was investigated. In the presence of heme nonapeptide, NADH or NADPH were enzymatically oxidized to NAD+ and NADP+, respectively. NAD(P)H consumption was coupled to oxygen uptake in both enzyme reactions. In the presence of carbon monoxide the spectrum of a carboxyheme complex was observed during NAD(P)H oxidation, indicating the existence of a transient ferroheme peptide. NAD(P)H oxidation could be partially inhibited by cyanide, superoxide dismutase and catalase. Superoxide and peroxide ions (generated by enzymic xanthine oxidation) only oxidized NAD(P)H in the presence of heme nonapeptide. Oxidation of NAD(P)H was more rapid with O2- than O2-2. We suggest that a ferroheme-O2 and various heme-oxy radical complexes (mainly ferroheme-O-2 complex) play a crucial role in NAD(P)H oxidation.  相似文献   

17.
The exponential growth of sequence data provides abundant information for the discovery of new enzyme reactions. Correctly annotating the functions of highly diverse proteins can be difficult, however, hindering use of this information. Global analysis of large superfamilies of related proteins is a powerful strategy for understanding the evolution of reactions by identifying catalytic commonalities and differences in reaction and substrate specificity, even when only a few members have been biochemically or structurally characterized. A comparison of >2500 sequences sharing the six-bladed β-propeller fold establishes sequence, structural, and functional links among the three subgroups of the functionally diverse N6P superfamily: the arylesterase-like and senescence marker protein-30/gluconolactonase/luciferin-regenerating enzyme-like (SGL) subgroups, representing enzymes that catalyze lactonase and related hydrolytic reactions, and the so-called strictosidine synthase-like (SSL) subgroup. Metal-coordinating residues were identified as broadly conserved in the active sites of all three subgroups except for a few proteins from the SSL subgroup, which have been experimentally determined to catalyze the quite different strictosidine synthase (SS) reaction, a metal-independent condensation reaction. Despite these differences, comparison of conserved catalytic features of the arylesterase-like and SGL enzymes with the SSs identified similar structural and mechanistic attributes between the hydrolytic reactions catalyzed by the former and the condensation reaction catalyzed by SS. The results also suggest that despite their annotations, the great majority of these >500 SSL sequences do not catalyze the SS reaction; rather, they likely catalyze hydrolytic reactions typical of the other two subgroups instead. This prediction was confirmed experimentally for one of these proteins.  相似文献   

18.
Plant cytochromes P450 (P450s) participate in a variety of biochemical pathways to produce a vast diversity of plant natural products. The number of P450 genes in plant genomes is estimated to be up to 1% of the total gene annotations of each plant species, implying that plants are huge sources for various P450-dependent reactions. Plant P450s catalyze a wide variety of monooxygenation/hydroxylation reactions in secondary metabolism, and some of them are involved in unusual reactions such as methylenedioxy-bridge formation, phenol coupling reactions, oxidative rearrangement of carbon skeletons, and oxidative C–C bond cleavage. Here, we summarize unusual P450 reactions in various plant secondary metabolisms, and describe their proposed reaction mechanisms.  相似文献   

19.
Isolated P450 monooxygenases have for long been neglected catalysts in enzyme technology. This is surprising as they display a remarkable substrate specificity catalyzing reactions, which represent a challenge for classic organic chemistry. On the other hand, many P450 monooxygenases are membrane bound, depend on rather complicated electron transfer systems and require expensive cofactors such as NAD(P)H. Their activities are low, and stability leaves much to be desired. The use of bacterial P450 monooxygenases from CYP102 family allows overcoming some of these handicaps. They are soluble and their turnovers are high, presumably because their N-terminal heme monooxygenase and their C-terminal diflavin reductase domain are covalently linked. In recent years, protein engineering approaches have been successfully used to turn CYP102 monooxgenases into powerful biocatalysts.  相似文献   

20.
Cytochromes P450 (P450) are hemoproteins encoded by a superfamily of genes nearly ubiquitously distributed in different organisms from all biological kingdoms. The reactions carried out by P450s are extremely diverse and contribute to the biotransformation of drugs, the bioconversion of xenobiotics, the bioactivation of chemical carcinogens, the biosynthesis of physiologically important compounds such as steroids, fatty acids, eicosanoids, fat-soluble vitamins and bile acids, the conversion of alkanes, terpenes and aromatic compounds as well as the degradation of herbicides and insecticides. Cytochromes P450 belong to the group of external monooxygenases and thus receive the necessary electrons for oxygen cleavage and substrate hydroxylation from different redox partners. The classical as well as the recently discovered P450 redox systems are compiled in this paper and classified according to their composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号