首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Discovery of local packing motifs in protein structures   总被引:1,自引:0,他引:1  
We present a language for describing structural patterns of residues in protein structures and a method for the discovery of such patterns that recur in a set of protein structures. The patterns impose restrictions on the spatial position of each residue, their order along the amino acid chain, and which amino acids are allowed in each position. Unlike other methods for comparing sets of protein structures, our method is not based on the use of pairwise structure comparisons which is often time consuming and can produce inconsistent results. Instead, the method simultaneously takes into account information from all structures in the search for conserved structure patterns which are potential structure motifs. The method is based on describing the spatial neighborhoods of each residue in each structure as a string and applying a sequence pattern discovery method to find patterns common to subsets of these strings. Finally it is checked whether the similarities between the neighborhood strings correspond to spatially similar substructures. We apply the method to analyze sets of very disparate proteins from the four different protein families: serine proteases, cuprodoxins, cysteine proteinases, and ferredoxins. The motifs found by the method correspond well to the site and motif information given in the annotation of these proteins in PDB, Swiss-Prot, and PROSITE. Furthermore, the motifs are confirmed by using the motif data to constrain the structural alignment of the proteins obtained with the program SAP. This gave the best superposition/alignment of the proteins given the motif assignment.  相似文献   

2.
3.
Correlated motif mining (cmm) is the problem of finding overrepresented pairs of patterns, called motifs, in sequences of interacting proteins. Algorithmic solutions for cmm thereby provide a computational method for predicting binding sites for protein interaction. In this paper, we adopt a motif-driven approach where the support of candidate motif pairs is evaluated in the network. We experimentally establish the superiority of the Chi-square-based support measure over other support measures. Furthermore, we obtain that cmm is an np-hard problem for a large class of support measures (including Chi-square) and reformulate the search for correlated motifs as a combinatorial optimization problem. We then present the generic metaheuristic slider which uses steepest ascent with a neighborhood function based on sliding motifs and employs the Chi-square-based support measure. We show that slider outperforms existing motif-driven cmm methods and scales to large protein-protein interaction networks. The slider-implementation and the data used in the experiments are available on http://bioinformatics.uhasselt.be.  相似文献   

4.
Many methods have been described to predict the subcellular location of proteins from sequence information. However, most of these methods either rely on global sequence properties or use a set of known protein targeting motifs to predict protein localization. Here, we develop and test a novel method that identifies potential targeting motifs using a discriminative approach based on hidden Markov models (discriminative HMMs). These models search for motifs that are present in a compartment but absent in other, nearby, compartments by utilizing an hierarchical structure that mimics the protein sorting mechanism. We show that both discriminative motif finding and the hierarchical structure improve localization prediction on a benchmark data set of yeast proteins. The motifs identified can be mapped to known targeting motifs and they are more conserved than the average protein sequence. Using our motif-based predictions, we can identify potential annotation errors in public databases for the location of some of the proteins. A software implementation and the data set described in this paper are available from http://murphylab.web.cmu.edu/software/2009_TCBB_motif/.  相似文献   

5.
An  J.  Wako  H.  Sarai  A. 《Molecular Biology》2001,35(6):905-910
An amino acid sequence pattern conserved among a family of proteins is called motif. It is usually related to the specific function of the family. On the other hand, functions of proteins are realized through their 3D structures. Specific local structures, called structural motifs, are considered as related to their functions. However, searching for common structural motifs in different proteins is much more difficult than for common sequence motifs. We are attempting in this study to convert the information about the structural motifs into a set of one-dimensional digital strings, i.e., a set of codes, to compare them more easily by computer and to investigate their relationship to functions more quantitatively. By applying the Delaunay tessellation to a 3D structure of a protein, we can assign each local structure to a unique code that is defined so as to reflect its structural feature. Since a structural motif is defined as a set of the local structures in this paper, the structural motif is represented by a set of the codes. In order to examine the ability of the set of the codes to distinguish differences among the sets of local structures with a given PROSITE pattern that contain both true and false positives, we clustered them by introducing a similarity measure among the set of the codes. The obtained clustering shows a good agreement with other results by direct structural comparison methods such as a superposition method. The structural motifs in homologous proteins are also properly clustered according to their sources. These results suggest that the structural motifs can be well characterized by these sets of the codes, and that the method can be utilized in comparing structural motifs and relating them with function.  相似文献   

6.
An amino acid sequence pattern conserved among a family of proteins is called motif. It is usually related to the specific function of the family. On the other hand, functions of proteins are achieved by their 3D structures. Specific local structures, called structural motifs, are considered related to their functions. However, searching for common structural motifs in different proteins is much more difficult than for common sequence motifs. We are attempting in this study to convert the information about the structural motifs into a set of one-dimensional digital strings, i.e., a set of codes, to compare them more easily by computer and to investigate their relationship to functions more quantitatively. By applying the Delaunay tessellation to a 3D structure of a protein, we can assign each local structure to a unique code that is defined so as to reflect its structural feature. Since a structural motif is defined as a set of the local structures in this paper, the structural motif is represented by a set of the codes. In order to examine the ability of the set of the codes to distinguish differences among the sets of local structures with a given PROSITE pattern that contain both true and false positives, we clustered them by introducing a similarity measure among the set of the codes. The obtained clustering shows a good agreement with other results by direct structural comparison methods such as a superposition method. The structural motifs in homologous proteins are also properly clustered according to their sources. These results suggest that the structural motifs can be well characterized by these sets of the codes, and that the method can be utilized in comparing structural motifs and relating them with function.  相似文献   

7.
The wealth of newly obtained proteomic information affords researchers the possibility of searching for proteins of a given structure or function. Here we describe a general method for the detection of a protein domain of interest in any species for which a complete proteome exists. In particular, we apply this approach to identify histidine phosphotransfer (HPt) domain-containing proteins across a range of eukaryotic species. From the sequences of known HPt domains, we created an amino acid occurrence matrix which we then used to define a conserved, probabilistic motif. Examination of various organisms either known to contain (plant and fungal species) or believed to lack (mammals) HPt domains established criteria by which new HPt candidates were identified and ranked. Search results using a probabilistic motif matrix compare favorably with data to be found in several commonly used protein structure/function databases: our method identified all known HPt proteins in the Arabidopsis thaliana proteome, confirmed the absence of such motifs in mice and humans, and suggests new candidate HPts in several organisms. Moreover, probabilistic motif searching can be applied more generally, in a manner both readily customized and computationally compact, to other protein domains; this utility is demonstrated by our identification of histones in a range of eukaryotic organisms.  相似文献   

8.
The identification of potential protein binding sites (cis-regulatory elements) in the upstream regions of genes is key to understanding the mechanisms that regulate gene expression. To this end, we present a simple, efficient algorithm, BEAM (beam-search enumerative algorithm for motif finding), aimed at the discovery of cis-regulatory elements in the DNA sequences upstream of a related group of genes. This algorithm dramatically limits the search space of expanded sequences, converting the problem from one that is exponential in the length of motifs sought to one that is linear. Unlike sampling algorithms, our algorithm converges and is capable of finding statistically overrepresented motifs with a low failure rate. Further, our algorithm is not dependent on the objective function or the organism used. Limiting the space of candidate motifs enables the algorithm to focus only on those motifs that are most likely to be biologically relevant and enables the algorithm to use direct evaluations of background frequencies instead of resorting to probabilistic estimates. In addition, limiting the space of candidate motifs makes it possible to use computationally expensive objective functions that are able to correctly identify biologically relevant motifs.  相似文献   

9.
10.
S Chakraborty 《PloS one》2012,7(7):e40408
The aspiration to mimic and accelerate natural evolution has fueled interest in directed evolution experiments, which endow or enhance functionality in enzymes. Barring a few de novo approaches, most methods take a template protein having the desired activity, known active site residues and structure, and proceed to select a target protein which has a pre-existing scaffold congruent to the template motif. Previously, we have established a computational method (CLASP) based on spatial and electrostatic properties to detect active sites, and a method to quantify promiscuity in proteins. We exploit the prospect of promiscuous active sites to serve as the starting point for directed evolution and present a method to select a target protein which possesses a significant partial match with the template scaffold (DECAAF). A library of partial motifs, constructed from the active site residues of the template protein, is used to rank a set of target proteins based on maximal significant matches with the partial motifs, and cull out the best candidate from the reduced set as the target protein. Considering the scenario where this 'incubator' protein lacks activity, we identify mutations in the target protein that will mirror the template motif by superimposing the target and template protein based on the partial match. Using this superimposition technique, we analyzed the less than expected gain of activity achieved by an attempt to induce β-lactamase activity in a penicillin binding protein (PBP) (PBP-A from T. elongatus), and attributed this to steric hindrance from neighboring residues. We also propose mutations in PBP-5 from E. coli, which does not have similar steric constraints. The flow details have been worked out in an example which aims to select a substitute protein for human neutrophil elastase, preferably related to grapevines, in a chimeric anti-microbial enzyme which bolsters the innate immune defense system of grapevines.  相似文献   

11.
In Kellis et al. (2003), we reported the genome sequences of S. paradoxus, S. mikatae, and S. bayanus and compared these three yeast species to their close relative, S. cerevisiae. Genomewide comparative analysis allowed the identification of functionally important sequences, both coding and noncoding. In this companion paper we describe the mathematical and algorithmic results underpinning the analysis of these genomes. (1) We present methods for the automatic determination of genome correspondence. The algorithms enabled the automatic identification of orthologs for more than 90% of genes and intergenic regions across the four species despite the large number of duplicated genes in the yeast genome. The remaining ambiguities in the gene correspondence revealed recent gene family expansions in regions of rapid genomic change. (2) We present methods for the identification of protein-coding genes based on their patterns of nucleotide conservation across related species. We observed the pressure to conserve the reading frame of functional proteins and developed a test for gene identification with high sensitivity and specificity. We used this test to revisit the genome of S. cerevisiae, reducing the overall gene count by 500 genes (10% of previously annotated genes) and refining the gene structure of hundreds of genes. (3) We present novel methods for the systematic de novo identification of regulatory motifs. The methods do not rely on previous knowledge of gene function and in that way differ from the current literature on computational motif discovery. Based on genomewide conservation patterns of known motifs, we developed three conservation criteria that we used to discover novel motifs. We used an enumeration approach to select strongly conserved motif cores, which we extended and collapsed into a small number of candidate regulatory motifs. These include most previously known regulatory motifs as well as several noteworthy novel motifs. The majority of discovered motifs are enriched in functionally related genes, allowing us to infer a candidate function for novel motifs. Our results demonstrate the power of comparative genomics to further our understanding of any species. Our methods are validated by the extensive experimental knowledge in yeast and will be invaluable in the study of complex genomes like that of the human.  相似文献   

12.
13.
14.
Lu CH  Lin YS  Chen YC  Yu CS  Chang SY  Hwang JK 《Proteins》2006,63(3):636-643
To identify functional structural motifs from protein structures of unknown function becomes increasingly important in recent years due to the progress of the structural genomics initiatives. Although certain structural patterns such as the Asp-His-Ser catalytic triad are easy to detect because of their conserved residues and stringently constrained geometry, it is usually more challenging to detect a general structural motifs like, for example, the betabetaalpha-metal binding motif, which has a much more variable conformation and sequence. At present, the identification of these motifs usually relies on manual procedures based on different structure and sequence analysis tools. In this study, we develop a structural alignment algorithm combining both structural and sequence information to identify the local structure motifs. We applied our method to the following examples: the betabetaalpha-metal binding motif and the treble clef motif. The betabetaalpha-metal binding motif plays an important role in nonspecific DNA interactions and cleavage in host defense and apoptosis. The treble clef motif is a zinc-binding motif adaptable to diverse functions such as the binding of nucleic acid and hydrolysis of phosphodiester bonds. Our results are encouraging, indicating that we can effectively identify these structural motifs in an automatic fashion. Our method may provide a useful means for automatic functional annotation through detecting structural motifs associated with particular functions.  相似文献   

15.
16.
This paper takes a new view of motif discovery, addressing a common problem in existing motif finders. A motif is treated as a feature of the input promoter regions that leads to a good classifier between these promoters and a set of background promoters. This perspective allows us to adapt existing methods of feature selection, a well-studied topic in machine learning, to motif discovery. We develop a general algorithmic framework that can be specialized to work with a wide variety of motif models, including consensus models with degenerate symbols or mismatches, and composite motifs. A key feature of our algorithm is that it measures overrepresentation while maintaining information about the distribution of motif instances in individual promoters. The assessment of a motif's discriminative power is normalized against chance behaviour by a probabilistic analysis. We apply our framework to two popular motif models and are able to detect several known binding sites in sets of co-regulated genes in yeast.  相似文献   

17.
Hu J  Hu H  Li X 《Nucleic acids research》2008,36(13):4488-4497
The identification of cis-regulatory modules (CRMs) can greatly advance our understanding of eukaryotic regulatory mechanism. Current methods to predict CRMs from known motifs either depend on multiple alignments or can only deal with a small number of known motifs provided by users. These methods are problematic when binding sites are not well aligned in multiple alignments or when the number of input known motifs is large. We thus developed a new CRM identification method MOPAT (motif pair tree), which identifies CRMs through the identification of motif modules, groups of motifs co-occurring in multiple CRMs. It can identify 'orthologous' CRMs without multiple alignments. It can also find CRMs given a large number of known motifs. We have applied this method to mouse developmental genes, and have evaluated the predicted CRMs and motif modules by microarray expression data and known interacting motif pairs. We show that the expression profiles of the genes containing CRMs of the same motif module correlate significantly better than those of a random set of genes do. We also show that the known interacting motif pairs are significantly included in our predictions. Compared with several current methods, our method shows better performance in identifying meaningful CRMs.  相似文献   

18.

Background  

Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, amuch needed and importanttask is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO) project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base.  相似文献   

19.
20.
The characterization of protein interactions is essential for understanding biological systems. While genome-scale methods are available for identifying interacting proteins, they do not pinpoint the interacting motifs (e.g., a domain, sequence segments, a binding site, or a set of residues). Here, we develop and apply a method for delineating the interacting motifs of hub proteins (i.e., highly connected proteins). The method relies on the observation that proteins with common interaction partners tend to interact with these partners through a common interacting motif. The sole input for the method are binary protein interactions; neither sequence nor structure information is needed. The approach is evaluated by comparing the inferred interacting motifs with domain families defined for 368 proteins in the Structural Classification of Proteins (SCOP). The positive predictive value of the method for detecting proteins with common SCOP families is 75% at sensitivity of 10%. Most of the inferred interacting motifs were significantly associated with sequence patterns, which could be responsible for the common interactions. We find that yeast hubs with multiple interacting motifs are more likely to be essential than hubs with one or two interacting motifs, thus rationalizing the previously observed correlation between essentiality and the number of interacting partners of a protein. We also find that yeast hubs with multiple interacting motifs evolve slower than the average protein, contrary to the hubs with one or two interacting motifs. The proposed method will help us discover unknown interacting motifs and provide biological insights about protein hubs and their roles in interaction networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号