首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The influence of transglutaminase 2 (TG2) activity on the proliferative effect of epidermal growth factor (EGF) and on EGF receptor affinity in periportal hepatocytes (PPH) and perivenous hepatocytes (PVH) has been investigated using a primary culture system. PPH and PVH subpopulations have been isolated using the digitonin/collagenase perfusion technique. DNA synthesis was assessed by [3H] thymidine incorporation into hepatocytes. The assay for binding of [125I] EGF to cultured hepatocytes was analysed by Scatchard plot analysis. Pretreatment with the TG2 inhibitor monodansylcadaverine (MDC) greatly increased EGF-induced DNA synthesis in both PPH and PVH. Furthermore, [125I] EGF binding studies in PVH treated with MDC indicated that high-affinity EGF receptor expression was markedly up-regulated, whereas in PPH, there was no significant effect. Treatment with retinoic acid (RA), an inducer of TG2 expression, significantly decreased EGF-induced DNA synthesis in both PPH and PVH. Binding studies in the presence of RA revealed that the high-affinity EGF receptor was down-regulated and completely absent in both PPH and PVH. These results suggest that TG2 was involved in the differential growth capacities of PPH and PVH through down-regulation of high-affinity EGF receptors.  相似文献   

2.
We have previously shown that prothrombin, a blood coagulation factor, can cause an inhibition of DNA synthesis in normal rat hepatocytes. To explore the mechanisms of this prothrombin action, we examined its effects on the activation of fibronectin receptor integrin alpha5, since fibronectin was found to be degraded by prothrombin actions in primary hepatocyte cultures. We found that prothrombin treatment of rat hepatocytes without addition of any growth factor induced tyrosine phosphorylation of integrin alpha5 and interaction of integrin alpha5 with epidermal growth factor receptor (EGFR), leading to EGFR tyrosine phosphorylation at tyrosine residues Tyr-845 and Tyr-1173. EGFR tyrosine phosphorylation triggered phosphorylation of its down-stream target Shc and the activation of the c-Jun N-terminal kinase (JNK) pathway. Prothrombin also induced hepatocyte apoptosis, a change in cell shape and activation of caspase 3 pathway. The JNK pathway is most likely involved in prothrombin-induced hepatocyte apoptosis, because pre-treatment of hepatocytes with JNK kinase inhibitor II (SP600125) antagonized these prothrombin actions. The data suggest that integrin-related EGFR activation by prothrombin can induce cell growth inhibition and apoptosis via an EGFR-JNK signaling pathway.  相似文献   

3.
Additivity of the proliferative effects of HGF/SF and EGF on hepatocytes   总被引:1,自引:0,他引:1  
The additivity of DNA synthesis induced by hepatocyte growth factor/scatter factor (HGF/SF) and epidermal growth factor (EGF) was revealed in periportal hepatocytes (PPH), perivenous hepatocytes (PVH), and primary hepatocytes. Furthermore, additivity of the signal transduction pathway of HGF/SF and EGF was investigated (i.e., the activity of mitogen-activated protein kinase (MAPK) induced by HGF/SF and EGF), but it was not seen in PPH, PVH, or primary hepatocytes, although wortomannin, a PI 3-kinase inhibitor, abolished the additivity. The additivity of DNA synthesis induced by HGF/SF and EGF was not related to hepatocyte heterogeneity, but to a difference in the signal transduction pathway, probably another pathway that is different from the classical MAPK (MAPK/ERK1,2) path.  相似文献   

4.
Phenobarbitone (PB) treatment of mice causes a decrease in the growth factor responsiveness of hepatocytes. Here, epidermal growth factor receptor (EGFR) expression and receptor autophosphorylation was determined in hepatocytes isolated from control and PB-treated mice. There was a decrease in the level of EGFR expression in hepatocytes isolated from mice following PB administration when compared to controls. EGF caused an approximate 20-fold increase of the 170 kD phosphotyrosine band in control hepatocytes, which was inhibited by the EGFR specific tyrosine kinase inhibitor 4, 5-dianilinopthalamide. Following PB treatment, the degree of basal receptor phosphorylation (in the absence of EGF) was significantly greater and therefore the fold rise in EGFR phosphorylation in isolated hepatocytes was lower than in controls. However, the overall extent of EGF-induced receptor phosphorylation was not diminished in hepatocytes isolated from PB-treated mice. Therefore the reduction in responsiveness to growth factors seen in hepatocytes ex vivo or the cessation of proliferation observed in vivo following PB administration is unlikely to be attributed to a decrease in ligand binding and subsequent receptor autophosphorylation.  相似文献   

5.
We have studied epidermal growth factor receptor (EGFR) phosphorylation and localization in the pre-replicative phase of liver regeneration induced by a 70% partial hepatectomy (PH), and how a PH affects EGFR activation and trafficking. When Western blotting was performed on livers after PH with antibodies raised against activated forms of EGFR autophosphorylation sites, no marked increase in EGFR tyrosine phosphorylation was observed. However, events associated with attenuation of EGFR signals were observed. Two hours after PH, we found increased EGFR ubiquitination and internalization, followed by receptor downregulation. Furthermore, EGFR phosphorylation following an injection of EGF was reduced after PH. This reduction correlated with an increased activation of PKC and a distinct augmentation in the phosphorylation of the PKC-regulated T654-site of EGFR. When primary cultured hepatocytes were treated with tetradecanoylphorbol acetate (TPA) to induce T654-phosphorylation of EGFR, we found colocalization of a fraction of EGFR with EEA1, downregulation of EGF-mediated EGFR autophosphorylation, altered ligand-induced intracellular sorting of EGFR, and increased mitogenic signaling through the EGFR-Ras-Raf-ERK pathway. Further, we found that both TPA and a PH enhanced EGF-induced proliferation of hepatocytes. In conclusion, our results suggest that hepatocyte priming involves modulation of EGFR that enhances its ability to mediate growth factor responses without an increase in its receptor tyrosine kinase-activity. This may be a pre-replicative competence event that increases growth factor effects during G1 progression.  相似文献   

6.
Wong ES  Fong CW  Lim J  Yusoff P  Low BC  Langdon WY  Guy GR 《The EMBO journal》2002,21(18):4796-4808
Drosophila Sprouty (dSpry) was genetically identified as a novel antagonist of fibroblast growth factor receptor (FGFR), epidermal growth factor receptor (EGFR) and Sevenless signalling, ostensibly by eliciting its response on the Ras/MAPK pathway. Four mammalian sprouty genes have been cloned, which appear to play an inhibitory role mainly in FGF- mediated lung and limb morphogenesis. Evidence is presented herein that describes the functional implications of the direct association between human Sprouty2 (hSpry2) and c-Cbl, and its impact on the cellular localization and signalling capacity of EGFR. Contrary to the consensus view that Spry2 is a general inhibitor of receptor tyrosine kinase signalling, hSpry2 was shown to abrogate EGFR ubiquitylation and endocytosis, and sustain EGF-induced ERK signalling that culminates in differentiation of PC12 cells. Correlative evidence showed the failure of hSpry2DeltaN11 and mSpry4, both deficient in c-Cbl binding, to instigate these effects. hSpry2 interacts specifically with the c-Cbl RING finger domain and displaces UbcH7 from its binding site on the E3 ligase. We conclude that hSpry2 potentiates EGFR signalling by specifically intercepting c-Cbl-mediated effects on receptor down-regulation.  相似文献   

7.
Many hepatocellular activities may be proximally regulated by intracellular signalling proteins including mitogen-activated protein kinases (MAPK). In this study, signalling events from epidermal growth factor (EGF) and insulin were examined in primary cultured human and rat hepatocytes. Using Western immunoblots, rat and human hepatocytes were found to produce a rapid tyrosine phosphorylation of the EGF receptor and MAPK following 0·5–1 min exposure to EGF. Phosphorylation of p42 and p44 MAPK was observed following 2·5 min exposure to EGF. Insulin treatment produced phosphorylation of the insulin receptor β subunit; shc phosphorylation was not observed. MAPK phosphorylation corresponded with a shift in molecular weight and an increase in kinase activity. Insulin-dependent activation of MAPK was unequivocally observed only in human hepatocytes, though a slight activation was detected in rat. Co-treatment with insulin and EGF produced phosphorylation and complete electrophoretic shift in molecular weight of MAPK, with an additive or synergistic increase in enzyme activity in rat but not human hepatocytes; human hepatocyte MAPK was maximally stimulated by EGF alone. Glucagon pretreatment blocked phosphorylation, gel mobility shift and kinase activity of MAPK induced by insulin but only partially blocked EGF-induced MAPK activation in human hepatocytes. Glucagon also reduced the activation of MAPK by EGF in rat hepatocytes. Pre-treatments with forskolin or cyclic AMP analogues diminished in the insulin-, EGF- and insulin plus EGF-dependent activation of MAPK in rat hepatocytes without effecting phosphorylation of receptors or MAPK. These results indicate that although EGF and insulin may both signal through the MAPK/ras/raf/MAPK pathway, the response for MAPK differs between these ligands and between species. Further, in both rat and human, glucagon exerts its effects through a cyclic AMP-dependent mechanism at a level in the insulin and EGF signal transduction pathways downstream of MAPK but promixal to MAPK. The partial inhibition of EGF-induced MAPK phosphorylation by glucagon in human hepatocytes provides further evidence for a raf-1-independent pathway for activation of MAPK. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
We have previously shown that chronic ethanol consumption inhibits liver regeneration by impairing EGF receptor (EGFR)-operated phospholipase C-gamma1 (PLC-gamma1) activation and resultant intracellular Ca2+ signalling. Activation of PLC-gamma1 by EGFR requires the EGFR to bind to PLC-gamma1 after its translocation from cytosol to cytoskeleton. In order to understand the mechanism by which ethanol impairs PLC-gamma1 activation, we examined the effect of alcohol on interactions between EGFR and PLC-gamma1. In cultured hepatocytes from control rats, EGF rapidly induced tyrosine phosphorylation of both the EGFR and of PLC-gamma1. EGF also stimulated PLC-gamma1 translocation from cytosol to a cytoskeletal compartment where PLC-gamma1 interacted with EGFR. In hepatocytes from rats fed ethanol for 16 weeks, the above reactions were substantially inhibited. Tyrphostin AG1478, an EGFR-specific tyrosine kinase inhibitor, mimicked the effects of chronic ethanol on EGFR phosphorylation, PLC-gamma1 translocation and interactions between EGFR and PLC-gamma1 in the cytoskeleton. Further, tyrphostin AG1478 also inhibited EGF-induced DNA synthesis. These results indicate that ethanol impairs EGFR-operated [Ca2+]i signaling by disrupting the interactions between EGFR and PLC-gamma1.  相似文献   

9.
The aim of the study was to analyze whether the proliferative effects of insulin in rat liver involve cross-signaling toward the epidermal growth factor receptor (EGFR) and whether this is mediated by insulin-induced hepatocyte swelling. Studies were performed in the perfused rat liver and in primary rat hepatocytes. Insulin (35 nmol/liter) induced phosphorylation of the EGFR at position Tyr845 and Tyr1173, but not at Tyr1045, suggesting that EGF is not involved in insulin-induced EGFR activation. Insulin-induced EGFR phosphorylation and subsequent ERK1/2 phosphorylation were sensitive to bumetanide, indicating an involvement of insulin-induced hepatocyte swelling. In line with this, hypoosmotic (225 mosmol/liter) hepatocyte swelling also induced EGFR and ERK1/2 activation. Insulin- and hypoosmolarity-induced EGFR activation were sensitive to inhibition by an integrin-antagonistic RGD peptide, an integrin β1 subtype-blocking antibody, and the c-Src inhibitor PP-2, indicating the involvement of the recently described integrin-dependent osmosensing/signaling pathway (Schliess, F., Reissmann, R., Reinehr, R., vom Dahl, S., and Häussinger, D. (2004) J. Biol. Chem. 279, 21294–21301). As shown by immunoprecipitation studies, insulin and hypoosmolarity induced a rapid, RGD peptide-, integrin β1-blocking antibody and PP-2-sensitive association of c-Src with the EGFR. As for control, insulin-induced insulin receptor substrate-1 phosphorylation remained unaffected by the RGD peptide, PP-2, or inhibition of the EGFR tyrosine kinase activity by AG1478. Both insulin and hypoosmolarity induced a significant increase in BrdU uptake in primary rat hepatocytes, which was sensitive to RGD peptide-, integrin β1-blocking antibody, PP-2, AG1478, and PD098059. It is concluded that insulin- or hypoosmolarity-induced hepatocyte swelling triggers an integrin- and c-Src kinase-dependent EGFR activation, which may explain the proliferative effects of insulin.  相似文献   

10.
Although caveolin-1 is thought to facilitate the interaction of receptors and signaling components, its role in epidermal growth factor receptor (EGFR) signaling remains poorly understood. Ganglioside GM3 inhibits EGFR autophosphorylation and may thus affect the interaction of caveolin-1 and the EGFR. We report here that endogenous overexpression of GM3 leads to the clustering of GM3 on the cell membrane of the keratinocyte-derived SCC12 cell line and promotes co-immunoprecipitation of caveolin-1 and GM3 with the EGFR. Overexpression of GM3 does not affect EGFR distribution but shifts caveolin-1 to the detergent-soluble, EGFR-containing region; consistently, caveolin-1 is retained in the detergent-insoluble membrane when ganglioside is depleted. GM3 overexpression inhibits EGFR tyrosine phosphorylation and receptor dimerization and concurrently increases both the content and tyrosine phosphorylation of EGFR-associated caveolin-1, providing evidence that tyrosine phosphorylation of caveolin-1 inhibits EGFR signaling. Consistently, depletion of ganglioside both increases EGFR phosphorylation and prevents the EGF-induced tyrosine phosphorylation of caveolin-1. GM3 also induces delayed serine phosphorylation of EGFR-unassociated caveolin-1, suggesting a role for serine phosphorylation of caveolin-1 in regulating EGFR signaling. These studies suggest that GM3 modulates the caveolin-1/EGFR association and is critical for the EGF-induced tyrosine phosphorylation of caveolin-1 that is associated with its inhibition of EGFR activation.  相似文献   

11.
Asymmetric dimer formation of epidermal growth factor receptor (EGFR) is crucial for EGF-induced receptor activation. Even though autophosphorylation is important for activation, its role remains elusive in the context of regulating dimers. In this study, employing overlapping time series analysis to raster image correlation spectroscopy (RICS), we observed time-dependent transient dynamics of EGFR dimerization and found EGFR kinase activity to be essential for dimerization. As a result of which, we hypothesized that phosphorylation could influence dimerization. Evaluating this point, we observed that one of the tyrosine residues (Y954) located in the C-terminal lobe of the activator kinase domain was important to potentiate dimerization. Functional imaging to monitor Ca2+ and ERK signals revealed a significant role of Y954 in influencing downstream signaling cascade. Crucial for stabilization of EGFR asymmetric dimer is a “latch” formed between kinase domains of the binding partners. Because Y954 is positioned adjacent to the latch binding region on the kinase domain, we propose that phosphorylation strengthened the latch interaction. On the contrary, we identified that threonine phosphorylation (T669) in the latch domain negatively regulated EGFR dimerization and the downstream signals. Overall, we have delineated the previously anonymous role of phosphorylation at the latch interface of kinase domains in regulating EGFR dimerization.  相似文献   

12.
Growth hormone (GH) promotes signaling by causing activation of the non-receptor tyrosine kinase, JAK2, which associates with the GH receptor. GH causes phosphorylation of epidermal growth factor receptor (EGFR; ErbB-1) and its family member, ErbB-2. For EGFR, JAK2-mediated GH-induced tyrosine phosphorylation may allow EGFR to serve as a scaffold for GH signaling. For ErbB-2, GH induces serine/threonine phosphorylation that dampens basal and EGF-induced ErbB-2 kinase activation. We now further explore GH-induced EGFR phosphorylation in 3T3-F442A, a preadipocytic fibroblast cell line that expresses endogenous GH receptor, EGFR, and ErbB-2. Using a monoclonal antibody that recognizes ERK consensus site phosphorylation (PTP101), we found that GH caused PTP101-reactive phosphorylation of EGFR. This GH-induced EGFR phosphorylation was prevented by MEK1 inhibitors but not by a protein kinase C inhibitor. Although GH did not discernibly affect EGF-induced EGFR tyrosine phosphorylation, we observed by immunoblotting a substantial decrease of EGF-induced EGFR degradation in the presence of GH. Fluorescence microscopy studies indicated that EGF-induced intracellular redistribution of an EGFR-cyan fluorescent protein chimera was markedly reduced by GH cotreatment, in support of the immunoblotting results. Notably, protection from EGF-induced degradation and inhibition of EGF-induced intracellular redistribution afforded by GH were both prevented by a MEK1 inhibitor, suggesting a role for GH-induced ERK activation in regulating the trafficking itinerary of the EGF-stimulated EGFR. Finally, we observed augmentation of early aspects of EGF signaling (EGF-induced ERK2 activation and EGF-induced Cbl tyrosine phosphorylation) by GH cotreatment; the GH effect on EGF-induced Cbl tyrosine phosphorylation was also prevented by MEK1 inhibition. These data indicate that GH, by activating ERKs, can modulate EGF-induced EGFR trafficking and signaling and expand our understanding of mechanisms of cross-talk between the GH and EGF signaling systems.  相似文献   

13.
Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between (835)Ala and (918)Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events.  相似文献   

14.
《Cellular signalling》2014,26(10):2161-2166
Hepassocin (HPS) is a secreted protein with mitogenic activity on primary hepatocytes and protects hepatocytes from chemically-induced injury. Our previous studies showed that HPS stimulates proliferation of hepatocytes in an ERK pathway-dependent manner. However, the molecular mechanism of HPS-induced activation of the ERK pathway remains unclear. In this study, we found that HPS induced the phosphorylation of the epidermal growth factor receptor (EGFR) in the human L02 hepatocyte cell line, and this event was concomitant with the activation of the non-receptor tyrosine kinase Src. Specific inhibition of EGFR kinase activity by gefitinib or down-regulation of EGFR by specific EGFR siRNAs prevented HPS-induced activation of the ERK pathway and proliferation of L02 cells. Furthermore, inhibition of Src activity significantly blocked HPS-induced activation of the EGFR, which was suggestive of a ligand-independent transactivation mechanism of EGFR itself as well as ERK phosphorylation and proliferation of L02 cells. These results indicate that EGFR plays an important role in the mitogenic signaling induced by HPS in L02 cell lines and may further stimulate research on the role of HPS in hepatocytes within biological processes in human health and disease.  相似文献   

15.
In rat liver epithelial cells constitutively expressing transforming growth factor alpha (TGFalpha), c-Met is constitutively phosphorylated in the absence of its ligand, hepatocyte growth factor. We proposed that TGFalpha and the autocrine activation of its receptor, epidermal growth factor receptor (EGFR), leads to phosphorylation and activation of c-Met. We found that there is constitutive c-Met phosphorylation in human hepatoma cell lines and the human epidermoid carcinoma cell line, A431 which express TGFalpha, but not in normal human hepatocytes. Constitutive c-Met phosphorylation in A431, HepG2, AKN-1, and HuH6 cells was inhibited by neutralizing antibodies against TGFalpha and/or EGFR. Exposure to exogenous TGFalpha or EGF increased the phosphorylation of c-Met in the human epidermoid carcinoma cell line, A431. The increase of c-Met phosphorylation by TGFalpha in A431 cells was inhibited by neutralizing antibodies against TGFalpha and/or EGFR and by the EGFR-specific inhibitor tyrphostin AG1478. These results indicate that constitutive c-Met phosphorylation, and the increase of c-Met phosphorylation by TGFalpha or EGF, in tumor cell lines is the result of the activation via EGFR. We found that c-Met in tumor cells co-immunoprecipitates with EGFR regardless of the existence of their ligands in tumor cells, but not in normal human hepatocytes. We conclude that c-Met associates with EGFR in tumor cells, and this association facilitates the phosphorylation of c-Met in the absence of hepatocyte growth factor. This cross-talk between c-Met and EGFR may have significant implications for altered growth control in tumorigenesis.  相似文献   

16.
Epidermal growth factor (EGF) receptor (EGFR) has been implicated in tumor development and invasion. Dimerization and autophosphorylation of EGFR are the critical events for EGFR activation. However, the regulation of EGF-dependent and EGF-independent dimerization and phosphorylation of EGFR has not been fully understood. Here, we report that cytoplasmic protein plakophilin-2 (PKP2) is a novel positive regulator of EGFR signaling. PKP2 specifically interacts with EGFR via its N-terminal head domain. Increased PKP2 expression enhances EGF-dependent and EGF-independent EGFR dimerization and phosphorylation. Moreover, PKP2 knockdown reduces EGFR phosphorylation and attenuates EGFR-mediated signal activation, resulting in a significant decrease in proliferation and migration of cancer cells and tumor development. Our results indicate that PKP2 is a novel activator of the EGFR signaling pathway and a potential new drug target for inhibiting tumor growth.  相似文献   

17.
Herstatin is an autoinhibitor of the ErbB family consisting of subdomains I and II of the human epidermal growth factor receptor 2 (ErbB-2) extracellular domain and a novel C-terminal domain encoded by an intron. Herstatin binds to human epidermal growth factor receptor 2 and to the epidermal growth factor receptor (EGFR), blocking receptor oligomerization and tyrosine phosphorylation. In this study, we characterized several early steps in EGFR activation and investigated downstream signaling events induced by epidermal growth factor (EGF) and by transforming growth factor alpha (TGF-alpha) in NIH3T3 cell lines expressing EGFR with and without herstatin. Herstatin expression decreased EGF-induced EGFR tyrosine phosphorylation and delayed receptor down-regulation despite receptor occupancy by ligand with normal binding affinity. Akt stimulation by EGF and TGF-alpha, but not by fibroblast growth factor 2, was almost completely blocked in the presence of herstatin. Surprisingly, EGF and TGF-alpha induced full activation of MAPK in duration and intensity and stimulated association of the EGFR with Shc and Grb2. Although MAPK was fully stimulated, herstatin expression prevented TGF-alpha-induced DNA synthesis and EGF-induced proliferation. The herstatin-mediated uncoupling of MAPK from Akt activation was also observed in Chinese hamster ovary cells co-transfected with EGFR and herstatin. These findings show that herstatin expression alters EGF and TGF-alpha signaling profiles, culminating in inhibition of proliferation.  相似文献   

18.
Wang Q  Zhu F  Wang Z 《Experimental cell research》2007,313(15):3349-3363
Most studies regarding the role of epidermal growth factor (EGF) receptor (EGFR) C-terminal domain in EGFR internalization are done in the context of EGFR kinase activation. We recently showed that EGF-induced EGFR internalization is directly controlled by receptor dimerization, rather than kinase activation. Here we studied the role of EGFR C-terminus in EGF-induced EGFR internalization with or without EGFR kinase activation. We showed that graduate truncation of EGFR from C-terminus to 1044 did not affect EGF-induced EGFR endocytosis with or without kinase activation. However, truncation to 991 or further completely inhibited EGFR endocytosis. Graduate truncation within 991-1044 progressively lower EGF-induced EGFR endocytosis with most significant effects observed for residues 1005-1017. The endocytosis patterns of mutant EGFRs are independent of EGFR kinase activation. The residues 1005-1017 were also required for EGFR internalization triggered by non-ligand-induced receptor dimerization. This indicates that residues 1005-1017 function as an internalization motif, rather than a dimerization motif, to mediate EGFR internalization. Furthermore, we showed that the di-leucine motif 1010LL1011 within this region is essential in mediating EGF-induced rapid EGFR internalization independent of kinase activation. We conclude that EGFR C-terminal sequences 1005-1017 and the 1010LL1011 motif are essential for EGF-induced EGFR endoytosis independent of EGFR kinase activation and autophosphorylation.  相似文献   

19.
Insulin is known to induce hepatocyte swelling, which triggers via integrins and c-Src kinase an activation of the epidermal growth factor receptor (EGFR) and subsequent cell proliferation (1). Free fatty acids (FFAs) are known to induce lipoapoptosis in liver cells in a c-Jun-NH2-terminal kinase (JNK)-dependent, but death receptor-independent way (2). As non-alcoholic steatohepatitis (NASH) is associated with hyperinsulinemia and increased FFA-blood levels, the interplay between insulin and FFA was studied with regard to hepatocyte proliferation and apoptosis in isolated rat and mouse hepatocytes. Saturated long chain FFAs induced apoptosis and JNK activation in primary rat hepatocytes, but did not activate the CD95 (Fas, APO-1) system, whereas insulin triggered EGFR activation and hepatocyte proliferation. Coadministration of insulin and FFAs, however, abolished hepatocyte proliferation and triggered CD95-dependent apoptosis due to a JNK-dependent association of the activated EGFR with CD95, subsequent CD95 tyrosine phosphorylation and formation of the death-inducing signaling complex (DISC). JNK inhibition restored the proliferative insulin effect in presence of FFAs and prevented EGFR/CD95 association, CD95 tyrosine phosphorylation and DISC formation. Likewise, in presence of FFAs insulin increased apoptosis in hepatocytes from wild type but not from Alb-Cre-FASfl/fl mice, which lack functional CD95. It is concluded that FFAs can shift insulin-induced hepatocyte proliferation toward hepatocyte apoptosis by triggering a JNK signal, which allows activated EGFR to associate with CD95 and to trigger CD95-dependent apoptosis. Such phenomena may contribute to the pathogenesis of NASH.  相似文献   

20.
Wang Q  Villeneuve G  Wang Z 《EMBO reports》2005,6(10):942-948
Given that ligand binding is essential for the rapid internalization of epidermal growth factor receptor (EGFR), the events induced by ligand binding probably contribute to the regulation of EGFR internalization. These events include receptor dimerization, activation of intrinsic tyrosine kinase activity and autophosphorylation. Whereas the initial results are controversial regarding the role of EGFR kinase activity in EGFR internalization, more recent data suggest that EGFR kinase activation is essential for EGFR internalization. However, we have shown here that inhibition of EGFR kinase activation by mutation or by chemical inhibitors did not block EGF-induced EGFR internalization. Instead, proper EGFR dimerization is necessary and sufficient to stimulate EGFR internalization. We conclude that EGFR internalization is controlled by EGFR dimerization, rather than EGFR kinase activation. Our results also define a new role for EGFR dimerization: by itself it can drive EGFR internalization, independent of its role in the activation of EGFR kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号