首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Regulation of simian virus 40 gene expression in Xenopus laevis oocytes.   总被引:4,自引:0,他引:4  
Expression of the simian virus 40 (SV40) early and late regions was examined in Xenopus laevis oocytes microinjected with viral DNA. In contrast to the situation in monkey cells, both late-strand-specific (L-strand) RNA and early-strand-specific (E-strand) RNA could be detected as early as 2 h after injection. At all time points tested thereafter, L-strand RNA was synthesized in excess over E-strand RNA. Significantly greater quantities of L-strand, relative to E-strand, RNA were detected over a 100-fold range of DNA concentrations injected. Analysis of the subcellular distribution of [35S]methionine-labeled viral proteins revealed that while the majority of the VP-1 and all detectable small t antigen were found in the oocyte cytoplasm, most of the large T antigen was located in the oocyte nucleus. The presence of the large T antigen in the nucleus led us to investigate whether this viral product influences the relative synthesis of late or early RNA in the oocyte as it does in infected monkey cells. Microinjection of either mutant C6 SV40 DNA, which encodes a large T antigen unable to bind specifically to viral regulatory sequences, or deleted viral DNA lacking part of the large T antigen coding sequences yielded ratios of L-strand to E-strand RNA that were similar to those observed with wild-type SV40 DNA. Taken together, these observations suggest that the regulation of SV40 RNA synthesis in X. laevis oocytes occurs by a fundamentally different mechanism than that observed in infected monkey cells. This notion was further supported by the observation that the major 5' ends of L-strand RNA synthesized in oocytes were different from those detected in infected cells. Furthermore, only a subset of those L-strand RNAs were polyadenylated.  相似文献   

2.
3.
4.
5.
Primary or continuous lines of mouse cells (3T3) are nonpermissive for simian virus 40 (SV40). Abortively infected cells synthesize tumor antigen (T antigen but not viral DNA and virus capsid protein (V antigen). V antigen, however, was obtained when SV40 DNA was injected into 3T3 cells. This late gene expression also appears to be correlated with the quantity of injected DNA molecules per 3T3 cell. T antigen formation can be detected after microinjection of only 1 to 2 DNA molecules, but the intensity of intranuclear T antigen fluorescence is significantly brighter with injection of higher concentrations of viral DNA. In permissive cells (TC7), early and late SV40 gene expression is directly related to the number of injected molecules. Microinjection of 1DNA molecule induced T and V antigen formation with the same efficiency as microinjection of 2,000 to 4,000 molecules. The question of weather late SV40 gene expression is directly related to the quantity of an early virus-specific product was approached by microinjection of early SV40 complementary RNA together with small amounts of viral DNA. V antigen was obtained in a high proportion of recipient 3T3 cells at conditions where microinjection of viral DNA alone induced T but not V antigen synthesis.  相似文献   

6.
The stability of tubulins present in crude extracts of untransformed BALB/c-3T3 mouse fibroblasts, Chinese hamster lung cells, and various of their simian virus 40 transformants was assessed by measurement of their individual colchicine-binding decay rates. In all cases studied the decays followed the kinetics of first-order reactions, and rates were reduced at low temperatures and by vinblastine sulfate. Under all assay conditions, including different temperatures and protein concentrations, tubulins of normal cells decayed considerably faster than those of simian virus 40-transformed cells. Experiments performed with a number of Chinese hamster lung cell clones transformed with temperature-sensitive simian virus 40 gene A mutants showed a clear correlation between increased tubulin stability and the expression of gene A function. These results suggest that it is T-antigen, the viral gene A product, that affects tubulin.  相似文献   

7.
Function of simian virus 40 gene A in transforming infection.   总被引:60,自引:85,他引:60       下载免费PDF全文
In productive infection by simian virus 40, the A gene is known to regulate the initiation of viral DNA replication and to control the synthesis of late viral RNA. The function of the A gene in transforming infection was investigated by the infection of a variety of cell species with six independently isolated temperature-sensitive mutants belonging to the A complementation group. The A mutants failed to initiate the stable transformation of cells during continuous infection at the restrictive temperature. After the establishment of transformation at the permissive temperature and a subsequent shift to the restrictive temperature to block the A function, however, two distinct virus-cell interactions were identified. In one case, the increased colony-forming capacity of transformed cells remained stable after the temperature shift. In the other case, the temperature shift decreased the capacity of transformed cells to form colonies to the level of untransformed control cells. The outcome of the virus-cell interaction depended both on the nature of the A mutation in a given cell species and on the species of the cell transformed by a given mutant. These findings suggest that the transformation process may require two distinct events, each related to A gene expression.  相似文献   

8.
Murine 3T3T stem cells transfected with pSV3neo DNA were employed to study the effects of somatic cell differentiation on simian virus 40 (SV40) T-antigen expression. This experimental approach was used because the 3T3T cell line is a well-characterized in vitro adipocyte differentiation system and the pSV3neo plasmid contains the early region of the SV40 genome and a selective marker, G418 resistance. Cell clones containing stably integrated pSV3neo which expressed T antigen were isolated in G418-containing medium. Most of these cell clones differentiated poorly. However, several clones retained the ability to efficiently differentiate into adipocytes, and with these cell clones, it was established that adipocyte differentiation markedly repressed T-antigen expression. The differentiation-specific repression of T-antigen expression did not result from a loss of proliferative potential associated with terminal differentiation, because it was observed in adipocytes that could be restimulated to proliferate. In such cells, restimulation of cell growth induced reactivation of T-antigen expression. Repression of T-antigen expression was also demonstrated during differentiation of SV40 T-antigen-immortalized human keratinocytes. These results establish that the process of cellular differentiation can repress T-antigen expression in at least two distinct biological systems.  相似文献   

9.
10.
Salt-stable association of simian virus 40 capsid with simian virus 40 DNA   总被引:2,自引:0,他引:2  
V Blasquez  M Bina 《FEBS letters》1985,181(1):64-68
In 8 M CsCl, a fraction of the wild-type previrions and tsB228 nucleoprotein complexes lose their core histones but retain their capsid. These histone-depleted complexes appear in the electron microscope as a protein shell attached to supercoiled DNA. Consistent with this result, we find that in 1 M NaCl, the wild-type previrions dissociate into two populations of nucleoprotein complexes. One population sediments between 50 and 140 S and morphologically resembles the shell-DNA complexes isolated in CsCl gradients. The other population is comprised primarily of nucleoproteins which sediment at 40 S.  相似文献   

11.
An immunoprecipitation assay was established for simian virus 40 T-antigen-bound nucleoprotein complexes by means of precipitation with sera from hamsters bearing simian virus 40-induced tumors. About 80% of simian virus 40 replicating nucleoprotein complexes in various stages of replication were immunoprecipitated. In contrast, less than 21% of mature nucleoprotein complexes were immunoprecipitated. Pulse-chase experiments showed that T antigen was lost from most of the nucleoprotein complexes concurrently with completion of DNA replication. T antigen induced by dl-940, a mutant with a deletion in the region coding for small T antigen, was also associated with most of the replicating nucleoprotein complexes. Once bound with replicating nucleoprotein complexes at the permissive temperature, thermolabile T antigen induced by tsA900 remained associated with the complexes during elongation of the replicating DNA chain at the restrictive temperature. These results suggest that simian virus 40 T antigen (probably large T antigen) associates with nucleoprotein complexes at or before initiation of DNA replication and that the majority of the T antigen dissociates from the nucleoprotein complexes simultaneously with completion of DNA replication.  相似文献   

12.
Treatment of African green monkey kidney CV-1 cells with human alpha interferons before infection with simian virus 40 (SV40) inhibited the accumulation of SV40 mRNAs and SV40 T-antigen (Tag). This inhibition persisted as long as the interferons were present in the medium. SV40-transformed human SV80 cells and mouse SV3T3-38 cells express Tag, and interferon treatment of these cells did not affect this expression. SV80 and SV3T3-38 cells which had been exposed to interferons were infected with a viable SV40 deletion mutant (SV40 dl1263) that codes for a truncated Tag. Exposure to interferons inhibited the accumulation of the truncated Tag (specified by the infecting virus) but had no significant effect on the accumulation of the endogenous Tag (specified by the SV40 DNA integrated into the cellular genome). The level of Tag in SV40-transformed mouse SV101 cells was not significantly decreased by interferon treatment. SV40 was rescued from SV101 cells and used to infect interferon-treated and control African green monkey kidney Vero cells. Tag accumulation was inhibited in the cells which had been treated with interferons before infection. Our data demonstrate that even within the same cell the interferon system can discriminate between expression of a gene in the SV40 viral genome and expression of the same gene integrated into a host chromosome.  相似文献   

13.
14.
Treatment of nucleoprotein complexes (NPCs) from simian virus 40 (SV40)-infected TC7 cells with NaCl (1 or 2 M) or guanidine-hydrochloride (1 or 2 M) resulted in a significant fraction of T antigen still associated with SV40 (I) DNA. Immunoprecipitation of the salt-treated NPCs with SV40 anti-T serum indicated that T antigen is preferentially associated with SV40 (I) DNA rather than with SV40 (II) DNA. Treatment of the NPCs with 4 M guanidine-hydrochloride, however, resulted in a substantial decrease in the amount of SV40 (I) and (II) DNA associated with T antigen. As the temperature was increased to 37 degrees C during incubation of NPCs with NaCl or guanidine-hydrochloride, there was a decrease in the amount of SV40 (I) and (II) DNA immunoprecipitated with SV40 anti-T serum. In the absence of salt, temperature had no effect on the association of T antigen with the SV40 DNA in the NPCs. Treatment of NPCs from SV40 wildtype or tsA58-infected cells grown at the permissive temperature with 1 or 2 M NaCl indicated that tsA T antigen has the same sensitivities as wild-type T antigen to high salt treatment when bound to DNA in NPCs. Characterization of the proteins associated with SV40 (I) DNA after high salt treatment revealed that, in addition to T antigen, a certain amount of viral capsid proteins VP1 and VP3 remained associated with the DNA. Complexes containing SV40 (I) DNA had a sedimentation value of 53S after 1 M NaCl treatment and 43S after 2 M NaCl treatment.  相似文献   

15.
Simian virus 40 tumor antigen (SV40 T antigen) was bound to both replicating and fully replicated SV40 chromatin extracted with a low-salt buffer from the nuclei of infected cells, and at least a part of the association was tight specific. T antigen cosedimented on sucrose gradients with SV40 chromatin, and T antigen-chromatin complexes could be precipitated from the nuclear extract specifically with anti-T serum. From 10 to 20% of viral DNA labeled to steady state with [3H]thymidine for 12 h late in infection or 40 to 50% of replicating viral DNA pulse-labeled for 5 min was associated with T antigen in such immunoprecipitates. After reaction with antibody, most of the T antigen-chromatin complex was stable to washing with 0.5 M NaCl, but only about 20% of the DNA label remained in the precipitate after washing with 0.5 M NaCl-0.4% Sarkosyl. This tightly bound class of T antigen was associated preferentially with a subfraction of pulse-labeled replicating DNA which comigrated with an SV40 form I marker. A tight binding site for T antigen was identified tentatively by removing the histones with dextran sulfate and heparin from immunoprecipitated chromatin labeled with [32P]phosphate to steady state and then digesting the DNA with restriction endonucleases HinfI and HpaII. The site was within the fragment spanning the origin of replication, 0.641 to 0.725 on the SV40 map.  相似文献   

16.
Intracellular nucleoprotein complexes containing SV40 supercoiled DNA were purified from cell lysates by chromatography on hydroxyapatite columns followed by velocity sedimentation through sucrose gradients. The major protein components from purified complexes were identified as histone-like proteins. When analyzed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels, complex proteins comigrated with viral core polypeptides VP4, VP5, VP6, and VP7. (3H) tryptophan was not detected in polypeptides from intracellular complexes or in the histone components from purified SV40 virus. However, a large amount of (3H) tryptophan was found in the viral polypeptide VP3 relative to that incorporated into the capsid polypeptides VP1 and VP2. Intracellular complexes contain 30 to 40% more protein than viral cores prepared by alkali dissociation of intact virus, but when complexes were exposed to the same alkaline conditions, protein also was removed from complexes and they subsequently co-sedimented with and had the same buoyant density as viral cores. The composition and physical similarities of nucleoprotein complex and viral cores indicate that complexes may have a role in the assembly of virions.  相似文献   

17.
Mouse, hamster, and human cells were transformed at the permissive temperature by mutants from simian virus 40 (SV40) complementation group A in order to ascertain the role of the gene A function in transformation. The following parameters of transformation were monitored with the transformed cells under permissive and nonpermissive conditions: morphology; saturation density; colony formation on plastic, on cell monolayers, and in soft agar; uptake of hexose; and the expression of SV40 tumor (T) and surface (S) antigens. Cells transformed by the temperature-sensitive (ts) mutants exhibited the phenotype of transformed cells at the nonrestrictive temperature for all of the parameters studied. However, when grown at the restrictive temperature, they were phenotypically similar to normal, untransformed cells. Growth curves showed that the (ts) A mutant-transformed cells exhibited the growth characteristics of wild-type virus-transformed cells at the permissive temperature and resembled normal cells when placed under restrictive conditions. There were 3-to 51-fold reductions in the levels of saturation density, colony formation, and uptake of hexose when the mutant-transformed cells were the elevated temperature as compared to when they were grown at the permissive temperature. Mutant-transformed cells from the nonpermissive temperature were able to produce transformed foci when shifted down to permissive conditions, indicating that the phenotypically reverted cells were still viable and that the reversion was a reversible event. SV40 T antigen was present in the cells at both temperatures, but S antigen was not detected in cells maintained at the nonpremissive temperature. All of the wild-type virus-transformed cells exhbited a transformed cells exhibited a transformed phenotype when grown under either restrictive or nonrestrictive conditions. Thers results indicate that the SV40 group A mutant-transformed cells are temperature sensitive for the maintenance of growth properties characteristics of transformation. Virus rescued from the mutant-transformed cells by the transfection method was ts, suggesting that the SV40 gene A function, rather than a cellular one, is responsible for the ts behavior of the cells.  相似文献   

18.
19.
Cell-free synthesis of simian virus 40 T-antigens.   总被引:9,自引:18,他引:9       下载免费PDF全文
  相似文献   

20.
Identification of simian virus 40 protein A.   总被引:16,自引:27,他引:16       下载免费PDF全文
A large simian virus 40 (SV40)-specific protein can be efficiently immunoprecipitated from infected cell extracts with antisera obtained from hamsters bearing SV40-induced tumors. The protein has an apparent molecular weight of 88,000 to 100,000 with respect to markers with known molecular weights, but behaves anomalously on sodium dodecyl sulfate (SDS)-polyacrylamide gels. Cell lines infected by two different strains of SV40 synthesize immunoreactive proteins that differ slightly in mobility during SDS-polyacrylamide gel electrophoresis, evidence that the protein is coded for by the virus. These differences in protein size correlate with differences in the electrophoretic mobility of viral DNA fragments obtained by digestion with HindII and III restriction enzymes. The size of the viral capsid proteins VP2 and VP3 also varies with the strain of virus. dl-1001, a constructed deletion mutant that lacks part of the SV40A gene, directs the synthesis of a 33,000-dalton polypeptide that is not detected in cells infected with wild-type virus. The deletion fragment, like the larger protein, is phosphorylated. Maps of tryptic peptides from the 88,000- to 100,000-dalton protein and the 33,000-dalton fragment show common peptides and provide strong direct evidence that the proteins are products of the SV40 A gene. The deletion fragment reacts with antitumor sera and binds to double-stranded DNA in the presence of the complete A protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号