首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated how the relative availability of solar radiation in the presence or absence of grazing alters the ability of benthic algae to respond to nutrient enrichment in an Alaskan marsh. We used a factorial mesocosm experiment that included nutrient enrichment (enriched or control), grazing (grazed or ungrazed), and light (unshaded or shaded) to simulate shading by macrophytes early and late in the growing season, respectively. We found stronger effects of grazers and nutrients compared to light on benthic algal biomass and taxonomic composition. Algal biomass increased in nutrient‐enriched treatments and was reduced by grazing. Shading did not have an effect on algal biomass or taxonomic composition, but the concentration of chl a per algal biovolume increased with shading, demonstrating the ability of algae to compensate for changes in light availability. Algal taxonomic composition was more affected by grazer presence than nutrients or light. Grazer‐resistant taxa (basal filaments of Stigeoclonium) were replaced by diatoms (Nitzschia) and filamentous green algae (Ulothrix) when herbivores were removed. The interacting and opposing influences of nutrients and grazing indicate that the algal community is under dual control from the bottom‐up (nutrient limitation) and from the top‐down (consumption by herbivores), although grazers had a stronger influence on algal biomass and taxonomic composition than nutrient enrichment. Our results suggest that low light availability will not inhibit the algal response to elevated nutrient concentrations expected with ongoing climate change, but grazers rapidly consume algae following enrichment, masking the effects of elevated nutrients on algal production.  相似文献   

2.
The capacity of epifauna to control algal proliferation following nutrient input depends on responses of both grazers and upper trophic level consumers to enrichment. We examined the responses of Thalassia testudinum (turtle grass) epifaunal assemblages to nutrient enrichment at two sites in Florida Bay with varying levels of phosphorus limitation. We compared epifaunal density, biomass, and species diversity in 2 m2 plots that had either ambient nutrient concentrations or had been enriched with nitrogen and phosphorus for 6 months. At the severely P-limited site, total epifaunal density and biomass were two times higher in enriched than in unenriched plots. Caridean shrimp, grazing isopods, and gammarid amphipods accounted for much of the increase in density; brachyuran crabs, primary predatory fish, and detritivorous sea cucumbers accounted for most of the increase in biomass. At the less P-limited site, total epifaunal density and biomass were not affected by nutrient addition, although there were more caridean shrimp and higher brachyuran crab and pink shrimp biomass in enriched plots. At both sites, some variation in epifaunal density and biomass was explained by features of the macrophyte canopy, such as T. testudinum and Halodule wrightii percent cover, suggesting that enrichment may change the refuge value of the macrophyte canopy for epifauna. Additional variation in epifaunal density and biomass was explained by epiphyte pigment concentrations, suggesting that enrichment may change the microalgal food resources that support grazing epifauna. Increased epifaunal density in enriched plots suggests that grazers may be able to control epiphytic algal proliferation following moderate nutrient input to Florida Bay. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

3.
Algal responses to nutrients, grazing by Helicopsyche borealis, and concurrent grazing by Helicopsyche and Baetis tricaudatus were examined in recirculating stream chambers. Alagl communities, dominated by Achnanthes minutissima, Cocconeis placentula, and Synedra ulna, were primarily phosphorus-limited. Algal populations responded after only 6 days of nutrient enrichment. Initially, both the adnate diatom Cocconeis and erect diatom Synedra showed positive response to nutrient enrichment. Accumulation of algal biomass between day 3 and 6 in the P enriched treatment was resulted primarily from the growth of Synedra, an overstory rosette-like diatom colony. Such a shift in dominant growth from adnate to erect diatoms is a general phenomenon in periphyton succession in the absence of disturbance. Algal species showed differential responses to an increase of Helicopsyche densities. The accrual rate of Achnanthes continuously decreased with increasing grazer densities. The accrual rates of both Cocconeis and Synedra declined but reached plateaus between medium and high grazing densities. Baetis effectively and exclusively depressed Synedra and had no significant impact on Cocconeis. After concurrent grazing, algal communities were mainly dominated by Cocconeis (approximately 80% of total algal biovolume). The grazer' s mouth structures, grazing efficiencies, and mobility may account for the differential effects of concurrent grazing on algal communities. Significant interactive effects of P and grazing by Helicopsyche indicated that both nutrient addition and grazing may exert significant impact on algal communities. However, grazing may have a much stronger effect on algae than nutrients. Our results indicate that enhancement of algal biomass by P was dampened by grazing activities and that P had no effect on algal biomass in the presence of grazers.  相似文献   

4.
1. In situ enclosure experiments were performed in the mesotrophic Bermejales reservoir to evaluate the algal response to changes in the nutrient supply and in the zooplankton size structure and density in a 2 × 2 factorial design. The experiments were conducted during the spring bloom of nanoplanktonic diatoms in 1989. 2. Nutrient enrichment promoted a great increase of phytoplankton biomass indicating a strong nutrient limitation on phytoplankton growth. Total phytoplankton biomass was significantly lower in the Daphina-added enclosures at a given nutrient level and strong direct an indirect effect of zooplankton on phytoplankton community structure and nutrient availability were observed. 3. Most of the nanoplanktonic species were effectively grazed but species with protective coverings and large size colonies were favoured by grazers and small chlorococcales were unaffected probably because of their compensatory high growth rates. The decrease in total biomass imposed by grazers is attributable mainly to the decrease of Cyclotella ocellata, the most abundant species. This taxon suffers two net effects of zooplankton: direct grazing and the indirect decrease of Si availability caused by the growth of C. ocellata which was promoted by P excretion by zooplankton. Indirect effects of grazers on Si availability should, therefore, be taken into account in explaining phytoplankton succession and community structure. 4. In this experiment grazers affected considerably the nanoplanktonic community in Bermejales reservoir. The extent which they were affected, however, depended not only on the algal size as a determinant of edibility but also greatly on the specific nutrient requirements and taxonomic features of the algal species.  相似文献   

5.
6.
1. Anthropogenic activities in prairie streams are increasing nutrient inputs and altering stream communities. Understanding the role of large consumers such as fish in regulating periphyton structure and nutritional content is necessary to predict how changing diversity will interact with nutrient enrichment to regulate stream nutrient processing and retention. 2. We characterised the importance of grazing fish on stream nutrient storage and cycling following a simulated flood under different nutrient regimes by crossing six nutrient concentrations with six densities of a grazing minnow (southern redbelly dace, Phoxinus erythrogaster) in large outdoor mesocosms. We measured the biomass and stoichiometry of overstory and understory periphyton layers, the stoichiometry of fish tissue and excretion, and compared fish diet composition with available algal assemblages in pools and riffles to evaluate whether fish were selectively foraging within or among habitats. 3. Model selection indicated nutrient loading and fish density were important to algal composition and periphyton carbon (C): nitrogen (N). Nutrient loading increased algal biomass, favoured diatom growth over green algae and decreased periphyton C : N. Increasing grazer density did not affect biomass and reduced the C : N of overstory, but not understory periphyton. Algal composition of dace diet was correlated with available algae, but there were proportionately more diatoms present in dace guts. We found no correlation between fish egestion/excretion nutrient ratios and nutrient loading or fish density despite varying N content of periphyton. 4. Large grazers and nutrient availability can have a spatially distinct influence at a microhabitat scale on the nutrient status of primary producers in streams.  相似文献   

7.
Liess A  Kahlert M 《Oecologia》2007,152(1):101-111
The potential interactions of grazing, nutrients and light in influencing autotroph species diversity have not previously been considered. Earlier studies have shown that grazing and nutrients interact in determining autotroph species diversity, since grazing decreases species diversity when nutrients (i.e. N or P) limit autotroph growth, but increases it when nutrients are replete. We hypothesized that increased light intensities would intensify the interactions between grazing and nutrients on algal species diversity, resulting in even stronger reductions in algal species diversity through grazing under nutrient–poor conditions, and to even stronger increases of algal species diversity through grazing under nutrient-rich conditions. We studied the effects of grazing (absent, present), nutrients (ambient, N + P enriched) and light (low light, high light) on benthic algal diversity and periphyton C:nutrient ratios (which can indicate algal nutrient limitation) in a factorial laboratory experiment, using the gastropod grazer Viviparus viviparus. Grazing decreased algal biomass and algal diversity, but increased C:P and N:P ratios of periphyton. Grazing also affected periphyton species composition, by decreasing the proportion of Spirogyra sp. and increasing the proportion of species in the Chaetophorales. Grazing effects on diversity as well as on periphyton N:P ratios were weakened when nutrients were added (interaction between grazing and nutrients). Chlorophyll a (Chl a) per area increased with nutrient addition and decreased with high light intensities. Light did not increase the strength of the interaction between grazing and nutrients on periphytic algal diversity. This study shows that nutrient addition substantially reduced the negative effects of grazing on periphytic algal diversity, whereas light did not interact with grazing or nutrient enrichment in determining periphytic algal diversity.  相似文献   

8.
Stream algal responses to herbivory were investigated under different environmental conditions. Snail densities and nutrient concentrations were manipulated in experimental enclosures to document the influence of nutrient availability on the magnitude of algal responses to herbivory. Periphyton mats in other enclosures were subjected to physical disruption by artificial means to evaluate the influence of disturbance on algal abundance. The impact of herbivory on algal abundance decreased substantially with increase in water column nutrient concentrations. This result was explained by findings that: (1) algal accumulation was constrained by nutrient availability under ambient water quality conditions. (2) accumulation of most algal populations was stimulated by nutrient enrichment only under grazed conditions. Thus, snail grazing simultaneously exerted a negative impact on algal abundance, by removal and consumption of a portion of the periphyton mat, and a stimulative effect, by increasing the availability of nutrients to remaining cells. Algal responses to artificial disturbance indicated that stimulative effects of herbivory were caused by the physical disruption of thr assemblage rather than by other processes (e. g., nutrient regeneration). However, consumptive losses far outweighed stimulative effects on algal abundance under ambient nutrient conditions. The magnitude of these two antagonistic effects was comparable under enriched conditions because grazing had only slight effects on algal abundance. Thus, the importance of different mechanisms of algal-herbivore interactions is strongly influenced by ambient environmental conditions, a finding that has important implications for predicting the outcome of herbivore-algal interactions in ecosystems with pronounced temporal and spatial variation in biotic and abiotic conditions.  相似文献   

9.
Human alteration of nutrient cycling and the densities of important consumers have intensified the importance of understanding how nutrients and consumers influence the structure of ecological systems. We examined the effects of both grazing and nutrient enrichment on algal abundance and diversity in a high-intertidal limpet-macroalgal community on the South Island of New Zealand, a relatively nutrient-poor environment. We used a fully factorial design with three levels each of grazing (manipulations of limpet and snail densities) and nutrients (nutrient-diffusers attached to the rock). Top-down control by grazers appears to be the driving organizing mechanism for algal communities in this system, with strong negative effects of grazing on algal diversity and abundance across all levels of nutrient enrichment. However, in contrast to the conclusions drawn from the analysis of the whole algal community, there was an interactive effect of grazing and enrichment on foliose algae, an important component of the algal system. When herbivory was reduced to very low levels, enrichment generated increases in the abundance and biomass of foliose algae. As expected, top-down control was the primary determinant of algal community structure in this system, controlling abundance and diversity of macrophytes on the upper shore. Contrary to expectations, however, increased nutrients had no community-wide effects, although foliose algal abundance increases were greatest with high nutrients and reduced grazing. It seems likely that most of the corticated algal species have limited capacity to respond to nutrient pulses in this nutrient-poor environment.  相似文献   

10.
Anthropogenic nutrient enrichment is increasingly modifying community structure and ecosystem functioning in terrestrial and aquatic ecosystems. In marine ecosystems, the paradigm is that nutrient enrichment leads to a decline of seagrasses by stimulating epiphytic algal growth, which shades and overgrows seagrasses. This ignores the potential for herbivores, which graze upon epiphytic algae, to partially or wholly counter such nutrient effects. We conducted a field experiment to assess the role that the trochid gastropod Calthalotia fragum plays in reducing nutrient impacts on the seagrass, Posidonia australis, in an urbanized Australian estuary, Botany Bay, Sydney. In a field experiment, where nutrient loading and grazer density were orthogonally manipulated, nutrient enrichment failed to promote epiphyte biomass or diminish growth and primary productivity of P. australis. To the contrary, nutrient enrichment enhanced photosynthesis of the seagrass in plots where the grazer was present at higher density. Epiphytic growth was negatively affected by increased C. fragum density, while P. australis shoot growth was positively influenced. Thus, in this study system, grazing appears to play a much greater role in determining seagrass primary productivity and above‐ground growth than moderate nutrient loading, suggesting that the interaction between grazers and nutrients depends on the relative levels of each. Our study contributes to a growing body of literature suggesting that effects of nutrient loading on benthic assemblages are not universally negative, but are dependent on the biotic and abiotic setting.  相似文献   

11.
1. Benthic algal communities are shaped by the availability of nutrients and light and by herbivore consumption. Many studies have examined how one of these factors affects algal communities, but studies simultaneously addressing all three are rare. 2. We investigated the effects of nutrients, light and a herbivore (the snail Potamopyrgus antipodarum) on benthic stream algae in a fully factorial experiment in 128 circular streamside channels. Four nutrient levels (none added to highly enriched), four snail grazing pressures (no snails to 777 individuals m?2) and two light levels (ambient and 65% reduced) were applied. Colonising algae were dominated by diatoms (Bacillariophyta), which were determined to species using acid‐cleaned samples and assigned to functional groups according to their physiognomic growth form. 3. Diatom community structure changed considerably in response to our manipulations. Light had the strongest influence (as indicated by manova effect size), whereas nutrients had an intermediate effect and grazing was fairly weak. Relative abundances of six common diatom taxa decreased under reduced light, whereas five others became more prevalent. Eight taxa benefitted from nutrient enrichment, while three became rarer. Grazing affected the relative density of only one common taxon, which increased at higher grazing pressure. 4. Diatom functional groups also responded strongly. ‘Low profile’ taxa dominated at low resource levels (nutrients and especially light), whereas ‘high profile’ and ‘motile’ taxa became markedly more prevalent at higher resource levels. 5. Two‐way interactions between experimental factors were quite common. For example, Planothidium lanceolatum and Rossithidium petersenii responded more strongly to nutrient enrichment at reduced than at ambient light, whereas Cocconeis placentula responded more strongly at ambient light. For diatom functional groups, the benefit of nutrient enrichment for ‘motile’ diatoms was greater at ambient than at reduced light. 6. Our results imply that multifactor experiments are required to determine the main forces driving the composition of benthic algal communities. Further, our findings highlight the considerable potential of using functional algal groups as indicators of changing environmental conditions to complement the traditional taxonomic approach.  相似文献   

12.
Herbivory and nutrient enrichment are major drivers of the dynamics of algal communities. However, their effects on algal abundance are under the influence of seasons. This study investigated the effects of herbivory and nutrient enrichment on early algal succession patterns using cages (uncaged and fully caged treatments) and two nutrient levels (ambient and enriched concentrations). To determine seasonal influences, experiment plots on dead coral patches were cleared during both dry and rainy season. Of the 17 algal species recruited in the experiment plots, three were dominant: Ulva paradoxa C. Agardh, Padina in the Vaughaniella stage, and Polysiphonia sphaerocarpa Børgesen. In this succession process, U. paradoxa was the earliest colonizer and occupied the cleared plots within the first month after clearing with the highest percentage of 83.33 ± 1.67% to 88.33 ± 9.28%. Then, it was replaced by the late successional algae, Padina in the Vaughaniella stage, and P. sphaerocarpa. The effects of herbivory and nutrient enrichment on algal abundance varied across algal functional groups and seasons. During the dry season, neither herbivory nor nutrient enrichment affected Ulva cover but during the rainy season, Ulva cover was influenced by nutrient enrichment. However, the abundance of algae in this early stage was not apparently affected by either herbivory or nutrient enrichment. Our results indicated that the timing of disturbance strongly influenced the algal abundance and successional patterns in this tropical intertidal community.  相似文献   

13.
The independent and interactive effects of nutrient concentration and epiphyte grazers on epiphyte biomass and macrophyte growth and production were examined in Zostera marina L. (eelgrass) microcosms. Experiments were conducted during early summer, late summer, fall, and spring in a greenhouse on the York River estuary of Chesapeake Bay. Nutrient treatments consisted of ambient or enriched (3× ambient) concentrations of inorganic nitrogen (ammonium nitrate) and phosphate. Grazer treatments consisted of the presence or absence of field densities of isopods, amphipods, and gastropods. epiphyte biomass increased with both grazer removal and nutrient enrichment during summer and spring experiments. The effect of grazers was stronger than that of nutrients. There was little epiphyte response to treatment during the fall, a result possibly of high ambient nutrient concentrations and low grazing pressure. Under low grazer densities of early summer, macrophyte production (g m–2 d–1) was reduced by grazer removal and nutrient enrichment independently. Under high grazer densities of late summer, macrophyte production was reduced by enrichment only with grazers absent. During spring and fall there were no macrophyte responses to treatment. The relative influence of epiphytes on macrophyte production may have been related to seasonally changing water temperature and macrophyte requirements for light and inorganic carbon.  相似文献   

14.
We hypothesize that algae with different cell compositions are differently perceived by their predators and consequently subjected to selective grazing. Five populations of the diatom Phaeodactylum tricornutum that differed in organic and elemental composition, but were otherwise identical, were generated by acclimation to distinct growth regimes. The different populations were then mixed in pairs and subjected to predation by either the rotifer Brachionus plicatilis or the copepod Acartia tonsa. The presence of rotifers had no impact on the ratio between any two algal populations. The presence of copepods, however, affected the ratio between algae previously acclimated to a medium containing 1 mM NH4+ and algae acclimated to 0.5 mM NO3?, and to either a lower irradiance or a higher CO2 concentration. We discuss the possible reason for the influence of different nutritional histories on the vulnerability of algae to predators. The differential impact of grazers on the growth of algae with different nutritional histories may result from direct selective grazing (i.e., grazers can detect algae with the most palatable cell composition), alone or combined to an asymmetric utilization of the nutrients regenerated after predation by co‐existing algal populations. Our results strongly suggest that the nutritional history of algae can influence the relationships between phytoplankton and grazers and hint at the possibility that algal cell composition is potentially subject to natural selection, because it influences the probability that algae survive predation.  相似文献   

15.
We examined the importance of temporal variability in top–down and bottom–up effects on the accumulation of stream periphyton, which are complex associations of autotrophic and heterotrophic microorganisms. Periphyton contributes to primary production and nutrient cycling and serves as a food resource for herbivores (grazers). Periphyton growth is often limited by the availability of nitrogen and phosphorus, and biomass can be controlled by grazers. In this study we experimentally manipulated nutrients and grazers simultaneously to determine the relative contribution of bottom–up and top–down controls on periphyton over time. We used nutrient diffusing substrates to regulate nutrient concentrations and an underwater electric field to exclude grazing insects in three sequential 16–17 day experiments from August to October in montane Colorado, USA. We measured algal biomass, periphyton organic mass, and algal community composition in each experiment and determined densities of streambed insect species, including grazers. Phosphorus was the primary limiting nutrient for algal biomass, but it did not influence periphyton organic mass across all experiments. Effects of nutrient additions on algal biomass and community composition decreased between August and October. Grazed substrates supported reduced periphyton biomass only in the first experiment, corresponding to high benthic abundances of a dominant mayfly grazer (Rhithrogena spp.). Grazed substrates in the first experiment also showed altered algal community composition with reduced diatom relative abundances, presumably in response to selective grazing. We showed that top–down grazing effects were strongest in late summer when grazers were abundant. The effects of phosphorus additions on algal biomass likely decreased over time because temperature became more limiting to growth than nutrients, and because reduced current velocity decreased nutrient uptake rates. These results suggest that investigators should proceed with caution when extending findings based on short‐term experiments. Furthermore, these results support the need for additional seasonal‐scale field research in stream ecology.  相似文献   

16.
Nutrient supply and the presence of grazers can control primary producers in aquatic ecosystems, but the relative importance of bottom-up and top-down effects remains inconclusive. We conducted a mesocosm experiment and a field study to investigate the independent and interactive effects of nutrient enrichment and grazing on primary producers in an eelgrass bed Zostera marina . Nutrient treatments consisted of ambient or enriched (2× and 4× ambient) concentrations of inorganic nitrogen and phosphate. Grazer treatments consisted of presence or absence of field densities of the common isopod Idotea baltica . We found strong and interacting effects of nutrients and grazing on epiphytes. Epiphyte biomass and productivity were enhanced by nutrient enrichment and decreased in the presence of grazers. The absolute amount of epiphyte biomass consumed by grazers increased under high nutrient supply, and thus, nutrient effects were stronger in the absence of grazing. The effects of grazers and fertilisation on epiphyte composition were antagonistic: chain-forming diatoms and filamentous algae profited from nutrient enrichment, but their proportions were reduced by grazing. Eelgrass growth was positively affected by grazing and by nutrient enrichment at moderate nutrient concentrations. High nutrient supply reduced eelgrass productivity compared to moderate nutrient conditions. The monthly measured field data showed a nitrogen limitation for epiphytes and eelgrass in summer, which may explain the positive effect of nutrient enrichment on both primary producers. Generally, the field data suggested the possibility of seasonally varying importance of bottom-up and top-down control on primary producers in this eelgrass system.  相似文献   

17.
After disturbance, recovery dynamics of local populations depend on arrival rates of immigrants and local growth conditions. We studied the effects of herbivore immigration rates and nutrient enrichment on the dynamics of grazing insect larvae, benthic microalgae, and filamentous macroalgae recovering from low local densities in an open stream system. The two types of algae approximate a trade‐off between capabilities for growing at low resource levels and resisting herbivory. Many microalgae achieve relatively high growth rates at low nutrient levels but are vulnerable to grazers, whereas many macroalgae require high nutrient levels for growth but become increasingly defended with filament growth. We hypothesized that macroalgae should benefit more strongly than microalgae from increasing nutrient levels and decreasing grazer immigration rates, because both conditions increase macroalgal chances to grow into a size refuge from herbivory. We created a gradient of nutrient concentrations and manipulated drift immigration rates of macroinvertebrates. Macro‐ and microalgal biomass and the relative contribution of macroalgae to total algal biomass increased with increasing nutrient enrichment and decreased with increasing grazer immigration. Grazer densities responded positively to nutrient enrichment. The densities of large baetids responded positively to higher immigration rates of large baetids, whereas small baetids and chironomid larvae showed the opposite response. Per capita emigration of small baetids decreased with increasing algal biomass. The data suggest that large baetids negatively affected algal biomass and that small baetid and chironomid densities tracked resource levels set by nutrient enrichment and large baetids. Our experiments highlight the prospects of integrating disturbance with nutrient supply, immigration rates and local trophic interactions (determining recovery trajectories) into conceptual models of open system dynamics. We suggest that recovery trajectories towards micro‐ or macroalgal dominated states may depend on the spatial scale of disturbance relative to the movement ranges of migrating grazers and to nutrient supply.  相似文献   

18.
Calanoid copepods are major components of most lacustrine ecosystems and their grazing activities may influence both phytoplankton biomass and species composition. To assess this we conducted four seasonal, in situ, grazing experiments in eutrophic Lake Rotomanuka, New Zealand. Ambient concentrations of late stage copepodites and adults of calanoid copepods (predominantly Calamoecia lucasi, but with small numbers of Boeckella delicata) were allowed to feed for nine days on natural phytoplankton assemblages suspended in the lake within 1160 litre polyethylene enclosures. The copepods reduced the total phytoplankton biomass of the dominant species in all experiments but were most effective in summer (the time of highest grazer biomass) followed by spring and autumn. In response to grazing pressure the density of individual algal species showed either no change or a decline. There were no taxa which increased in density in the presence of the copepods. The calanoid copepods suppressed the smallest phytoplankton species (especially those with GALD (Greatest Axial Linear Dimension) < µm) and there appeared to be no selection of algae on the basis of biovolume. Algal taxa which showed strong declines in abundance in the presence of the copepods include Cyclotella stelligera, Coelastrum spp., Trachelomonas spp., Cryptomonas spp., and Mallomonas akrokomos. Calanoid copepods are considered important grazers of phytoplankton biomass in this lake. The study supports the view that high phytoplankton:zooplankton biomass ratios and large average algal sizes characteristic of New Zealand lake plankton may, at least partly, be caused by year round grazing pressure on small algae shifting the competitive balance in favour of larger algal species.  相似文献   

19.
20.
1. Responses of zooplankton to nutrient enrichment and fish predation were studied in 1998 and 1999 by carrying out parallel mesocosm experiments in six lakes across Europe. 2. Zooplankton community structure, biomass and responses to nutrient and fish manipulation showed geographical and year‐to‐year differences. Fish had a greater influence than nutrients in regulating zooplankton biomass and especially the relative abundances of different functional groups of zooplankton. When fish reduced the biomass of large crustaceans, there was a complementary increase in the biomasses of smaller crustacean species and rotifers. 3. High abundance of submerged macrophytes provided refuge for zooplankton against fish predation but this refuge effect differed notably in magnitude among sites. 4. Large crustacean grazers (Daphnia, Diaphanosoma, Sida and Simocephalus) were crucial in controlling algal biomass, while smaller crustacean grazers and rotifers were of minor importance. Large grazers were able to control phytoplankton biomass even under hypereutrophic conditions (up to 1600 μg TP L?1) when grazer biomass was high (>80–90 μg dry mass L?1) or accounted for >30% of the grazer community. 5. The littoral zooplankton community was less resistant to change following nutrient enrichment in southern Spain, at high temperatures (close to 30 °C), than at lower temperatures (17–23 °C) characterising the other sites. This lower resistance was because of a greater importance of nutrients than zooplankton in controlling algal biomass. 6. Apart from the reduced role of large crustacean grazers at the lowest latitude, no consistent geographical patterns were observed in the responses of zooplankton communities to nutrient and fish manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号