首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Supplementation of growth media with high concentrations of substances like sucrose results in the induction of OmpC synthesis and the suppression of OmpF synthesis. We isolated a novel mutant in which OmpF synthesis is in the opposite direction from normal osmoregulation. By transductional mapping, the mutation was localized at 75 min between malA and aroB on the Escherichia coli chromosome map where the ompR-envZ region is. The mutation was suppressed by a plasmid carrying the ompR gene but not by a plasmid carrying the envZ gene alone. The mutation also resulted in the almost complete suppression of OmpC synthesis. However, the remaining OmpC synthesis was osmoregulated normally. Based on these observations, the mechanism of osmoregulation of OmpF-OmpC synthesis is discussed.  相似文献   

3.
J M Pages  J M Bolla  A Bernadac  D Fourel 《Biochimie》1990,72(2-3):169-176
Various monoclonal antibodies (MoF) directed against cell-surface-exposed epitopes of OmpF, one major outer membrane pore protein of Escherichia coli B and K-12, have been used to study the assembly and the topology of the protein. This paper firstly describes the characterization of the OmpF epitopes recognized by the various monoclonal antibodies. A comparison between OmpC, OmpF and PhoE porins with respect to their primary amino acid sequence and their cell-surface exposed regions allows us to propose a rough model including 2 antigenic sites. The second part is focused on the assembly of the OmpF protein in the outer membrane. Various forms, precursor, unassembled monomer, metastable oligomer (pre-trimer) and trimer are detected with immunological probes directed against OmpF during a kinetic analysis of the process. The requirement for a concomitant lipid synthesis during the trimerization has been demonstrated by investigating the presence of a specific native epitope. The role of lipopolysaccharide during the stabilization of the conformation is discussed with regard to the various steps of assembly.  相似文献   

4.
Selection was performed for resistance to a phage, Ox2, specific for the Escherichia coli outer membrane protein OmpA, under conditions which excluded recovery of ompA mutants. All mutants analyzed produced normal quantities of OmpA, which was also normally assembled in the outer membrane. They had become essentially resistant to OmpC and OmpF-specific phages and synthesized these outer membrane porins at much reduced rates. The inhibition of synthesis acted at the level of translation. This was due to the presence of lipopolysaccharides (LPS) with defective core oligosaccharides. Cerulenin blocks fatty acid synthesis and therefore that of LPS. It also inhibits synthesis of OmpC and OmpF but not of OmpA (C. Bocquet-Pagès, C. Lazdunski, and A. Lazdunski, Eur. J. Biochem. 118:105-111, 1981). In the presence of the antibiotic, OmpA synthesis and membrane incorporation remained unaffected at a time when OmpC and OmpF synthesis had almost ceased. The similarity of these results with those obtained with the mutants suggests that normal porin synthesis is not only interfered with by production of mutant LPS but also requires de novo synthesis of LPS. Since synthesis and assembly of OmpA into the outer membrane was not affected in the mutants or in the presence of cerulenin, association of this protein with LPS appears to occur with outer membrane-located LPS.  相似文献   

5.
6.
The outer membrane protein, OmpC, from Escherichia coli was used to display metal-binding poly-histidine peptides on the surface of this bacterium. SDS-PAGE analysis of outer membrane protein preparations confirmed the expression of the metal-binding epitopes inserted in position 162 of the mature OmpC protein. Display of these epitopes was confirmed by epifluorescence microscopy of cells bound to Ni2+-NTA-agarose beads and metal adsorption experiments. The cells harboring one or two copies of the metal binding epitope were able to adsorb 3 to 6 times more Zn2+ (13.8 mol g–1 cell), Fe3+ (35.3 mol g–1 cell), and Ni2+ (9.9 mol g–1 cell) metallic ions than control cells expressing the wild-type OmpC.  相似文献   

7.
An ompB strain of Escherichia coli K-12 lacking major outer membrane proteins OmpC and OmpF was used to isolate a pair of mutants that have restored the ability to synthesize either OmpC or OmpF protein. These mutants were found to produce the respective proteins constitutively under the several conditions where the synthesis in the wild-type strain was markedly repressed; namely, in the absence of the ompB gene function, under restrictive medium conditions, or upon lysogenization with phage PA-2. The mutations ompCp1 and ompFp9 responsible for such synthesis were shown to be located in the close vicinity of the corresponding structural genes, ompC and ompF. Moreover, the mutations affect the expression of these genes in a cis-dominant fashion. Taken together with other evidence, it was suggested that ompCp1 and ompFp9 represent regulatory site mutations occurring at the promoter regions of ompC and ompF respectively. Relevance of these findings to the genetic control of outer membrane protein synthesis is discussed.  相似文献   

8.
9.
Porin is a trimeric membrane protein that functions as a diffusion pore in the outer membrane of Escherichia coli. We report the existence and purification of porin heterotrimers between the ompC, ompF, and phoE porin gene products. Separation was achieved using a high resolution anion exchange column. The amount of each heterotrimer species present depended on the level of expression of the subunits and was consistent with random mixing of trimer subunits. A strong effect of bacterial lipopolysaccharide on the chromatography of porin was also detected. These results imply that assembly of porin trimers occurs between subunits synthesized on different polysomes and that subunit contacts between the porin subunits occur in conserved regions of the primary sequence.  相似文献   

10.
11.
The Escherichia coli EnvZ-OmpR regulatory system is a paradigm of intracellular signal transduction mediated by the well-documented phosphotransfer mechanism, by which the expression of the major outer membrane proteins, OmpC and OmpF, is regulated in response to the medium osmolarity. Although it is clear that the EnvZ histidine(His)-kinase is the major player in the phosphorylation of OmpR, it has been assumed for some time that there may be an alternative phospho-donor(s) that can phosphorylate OmpR under certain in vitro and in vivo conditions. In this study, to address this long-standing issue, extensive genetic studies were done with certain mutant alleles, including delta envZ, delta(ackA-pta), and delta sixA, as well as delta ompR. Here, for the first time, genetic evidence is provided that, in addition to EnvZ, acetyl phosphate and an as yet unidentified sensor His-kinase can serve as alternative in vivo phospho-donors for OmpR, even in the envZ+ background. A model for the alternative phosphotransfer signaling pathway involved in the phosphorylation of OmpR is proposed.  相似文献   

12.
The EnvZ protein is presumably a membrane-located osmotic sensor which is involved in expression of the ompF and ompC genes in Escherichia coli. Previously, we developed an in vitro method for analyzing the intact form of the EnvZ protein located in isolated cytoplasmic membranes, and demonstrated that this particular form of the EnvZ protein exhibits the ability not only as to OmpR phosphorylation but also OmpR dephosphorylation. In this study, to gain an insight into the structural and functional importance of the putative periplasmic domain of the EnvZ protein, a set of mutant EnvZ proteins, which lack various portions of the periplasmic domain, were characterized in terms of not only their in vivo osmoregulatory phenotypes but also in vitro EnvZ-OmpR phosphotransfer reactions. It was revealed that these deletion mutant EnvZ proteins are normally incorporated into the cytoplasmic membrane. Cells harboring these mutant EnvZ proteins showed a pleiotropic phenotype, namely, OmpF- Mal- LamB- PhoA-, and produced the OmpC protein constitutively irrespective of the medium osmolarity. It was also suggested that all of these mutant EnvZ proteins were defective in their in vitro OmpR dephosphorylation ability, while their OmpR phosphorylation ability remained unaffected. These results imply the functional importance of the periplasmic domain of the EnvZ protein for modulation of the kinase/phosphatase activity exhibited by the cytoplasmic domain in response to an environmental osmotic stimulus.  相似文献   

13.
A single-projection structure analysis of a bacterial outer membrane protein, OmpC, has been carried out by electron microscopy of frozen hydrated specimens. Two distinct crystal polymorphs have been observed in the frozen-hydrated samples, and projection structures of both forms have been obtained to a resolution of 13.5 A. Preliminary examination of negatively stained samples revealed the expected, trimeric appearance of pores in the OmpC specimens. Electron microscopy of unstained, frozen-hydrated OmpC reveals the trimeric pore structure with equal clarity. In addition, the overall molecular envelope of the protein is readily discerned, and a major lipid-containing domain can also be seen. Because of the small coherent patch size, mosaic disorder, and unpredictable polymorphism of the presently available specimens, three-dimensional reconstruction of frozen-hydrated OmpC has not been carried out.  相似文献   

14.
EnvZ is a membrane-located protein kinase which modulates expression of the ompF and ompC genes through phosphotransfer signal transduction in Escherichia coli. Previously, we developed an in vitro method for analyzing the intact form of EnvZ in isolated cytoplasmic membranes, and demonstrated that this particular form of EnvZ exhibits the ability not only of OmpR phosphorylation but also OmpR dephosphorylation. Taking advantage of this in vitro system, in this study, to assess the structural and functional importance of the membrane-spanning (transmembrane) regions of EnvZ, a set of mutant envZ genes, each of which specifies a mutant EnvZ protein with a single amino acid replacement within or very near the transmembrane regions, were isolated and characterized in terms of their in vivo osmoregulatory phenotypes and in vitro EnvZ-OmpR phosphotransfer activities. On the basis of the results, it was suggested that the transmembrane regions of EnvZ play roles in transmembrane signaling and consequent modulation of the kinase/phosphatase activity exhibited by the cytoplasmic domain in response to an osmotic stimulus.  相似文献   

15.
The electrophoretic patterns of the outer membrane proteins of agar-entrapped Escherichia coli cells were found to be different from those of free organisms. In particular, the porin protein OmpF was underexpressed in immobilized bacteria, that displayed enhanced resistance to latamoxef.  相似文献   

16.
AIMS: To investigate the requirement of outer membrane porins for osmotic adaptation at alkaline pH in Escherichia coli. METHODS AND RESULTS: Escherichia coli mutants deficient in ompC, ompF and both genes were constructed and the growth of these mutants was observed at alkaline pH. The growth rate of the mutant deficient in both ompC and ompF was slower than that of the wild type and mutants deficient in one of these genes under hyperosmotic stress at pHs above 8.0. The decreased rate was recovered when a cloned ompC was introduced to the mutant, but the growth recovery with a cloned ompF was partial. Such growth diminution was not observed at pHs below 8.0. CONCLUSION: OmpC and OmpF were shown to participate in hyperosmotic adaptation at alkaline pH in E. coli. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is the first report to demonstrate that OmpC and OmpF are required for hyperosmotic adaptation at pHs above 8.0, but not below 8.0.  相似文献   

17.
MalF is an essential cytoplasmic membrane protein of the maltose transport system of Escherichia coli. We have developed a general approach for analysis of the mechanism of integration of membrane proteins and their membrane topology by characterizing a series of fusions of beta-galactosidase to MalF. The properties of the fusion proteins indicate the following. (1) The first two presumed transmembrane segments of MalF are sufficient to anchor beta-galactosidase firmly to the inner membrane. (2) Hybrid proteins with beta-galactosidase fused to a presumed cytoplasmic domain of MalF have high beta-galactosidase specific activity; fusions to periplasmic domains have low activity. We propose therefore, that periplasmic and cytoplasmic domains of integral membrane proteins can be distinguished by the enzymatic properties of such hybrid proteins. In general, it appears that cleaved or non-cleaved signal sequences when attached to beta-galactosidase cause it to become embedded in the membrane, and this results in the inability of the hybrid proteins to assemble into active enzyme. Additional properties of these fusion proteins contribute to our understanding of the regulation of MalF synthesis. The MalF protein, synthesized as part of the malEFG operon of E. coli, is approximately 30-fold less abundant in the cell than MalE protein (the maltose-binding protein). Differential amounts of the fusion proteins indicate that a regulatory signal occurs within the malF gene that is responsible for the step-down in expression from the malE gene to the malF gene.  相似文献   

18.
Summary The ras gene was fused with the DNA sequence of OmpF signal peptide or with the DNA sequence of OmpF signal peptide plus the amino terminal portion of the OmpF gene. They were placed in plasmids together with the bacteriophage P L promoter. These plasmids were introduced into Escherichia coli strain K-12 and the OmpF signal peptide fusion proteins were expressed. These fusion proteins were idetified as 29.0 and 30.0 kDa proteins. However, processed products of these proteins were not found in the The fusion proteins were localized mostly in the cytoplasm and the inner membrane, but none of them was secreted into the periplasmic space. On the other hand, the ras protein alone was found in the cytoplasm and not in the inner membrane. Viable counts of E. coli harbouring these plasmids decreased when these fused proteins were induced. Induction of the ras protein alone did not harm cells. These observations suggest that insertion of the heterologous proteins into the inner membrane may cause the bactericidal effect. Offprint requests to: A. Kaji  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号