首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While the mechanisms that regulate actin dynamics in cellular motility are intensively studied, relatively little is known about signaling events that transmit outside-in signals and direct assembly and regulation of actin polymerization complexes at the cell membrane. The kidney podocyte provides a unique model for investigating these mechanisms since deletion of Nephrin or Neph1, two interacting components of the specialized podocyte intercellular junction, results in abnormal podocyte morphogenesis and junction formation. We provide evidence that extends the existing model by which the Nephrin-Neph1 complex transduces phosphorylation-mediated signals that assemble an actin polymerization complex at the podocyte intercellular junction. Upon engagement, Neph1 is phosphorylated on specific tyrosine residues by Fyn, which results in the recruitment of Grb2, an event that is necessary for Neph1-induced actin polymerization at the plasma membrane. Importantly, Neph1 and Nephrin directly interact and, by juxtaposing Grb2 and Nck1/2 at the membrane following complex activation, cooperate to augment the efficiency of actin polymerization. These data provide evidence for a mechanism reminiscent of that employed by vaccinia virus and other pathogens, by which a signaling complex transduces an outside-in signal that results in actin filament polymerization at the plasma membrane.  相似文献   

2.
Fyn binds to and phosphorylates the kidney slit diaphragm component Nephrin   总被引:28,自引:0,他引:28  
Recent investigations have focused on characterizing the molecular components of the podocyte intercellular junction, because several of these components, including Nephrin, are functionally necessary for development of normal podocyte structure and filter integrity. Accumulating evidence suggests that the Nephrin-associated protein complex is a signaling nexus. As such, Nephrin-dependent signaling might be mediated in part through Nephrin phosphorylation. Described are biochemical and mouse genetics experiments demonstrating that membrane-associated Nephrin is tyrosine-phosphorylated by the Src family kinase Fyn. Nephrin fractionated in detergent-resistant glomerular membrane fractions with Fyn and Yes. Fyn directly bound Nephrin via its SH3 domain, and Fyn directly phosphorylated Nephrin. Glomeruli in which Fyn, Yes, or Fyn and Yes were genetically deleted in mice were characterized to explore the relationship between these kinases and Nephrin. Fyn deletion resulted in coarsening of podocyte foot processes and marked attenuation of Nephrin phosphorylation in isolated glomerular detergent-resistant membrane fractions. Yes deletion had no identifiable effect on podocyte morphology but dramatically increased Nephrin phosphorylating activity. Similar to Fyn deletion, simultaneous deletion of Fyn and Yes reduced Nephrin phosphorylating activity. These results demonstrate that endogenous Fyn catalyzes Nephrin phosphorylation in podocyte detergent-resistant membrane fractions. Although Yes appears to effect the regulation of Nephrin phosphorylation, the mechanism by which this occurs requires investigation.  相似文献   

3.
Nephrin is expressed at the basolateral aspect of podocytes and is an important signaling protein at the glomerular slit diaphragm. In vitro studies have demonstrated that Nephrin phosphorylation-dependent signaling is able to assemble a protein complex that is able to polymerize actin. However, proximal signaling events that result in nephrin tyrosine phosphorylation are not well understood. Nephrin deletion in mice and human nephrin mutations result in developmental failure of the podocyte intercellular junction resutling in proteinuria. This has been presumed to be due to a failure to respond to an external polarized cue in the absence of nephrin or a failure to transduce an outside-in signal in patients with nephrin mutations. The nephrin extracellular domain binds to itself or neph1 across the foot process intercellular junction. Nephrin is tyrosine phosphorylation-silent in healthy glomeruli when presumably the nephrin extracellular domain is in an engaged state. These observations raise the possibility of an alternate proximal signaling mechanism that might be responsible for nephrin tyrosine phosphorylation. Here we present data showing that integrin engagement at the basal aspect of cultured podocytes results in nephrin tyrosine phosphorylation. This is abrogated by incubating podocytes with an antibody that prevents integrin β1 ligation and activation in response to binding to extracellular matrix. Furthermore, nephrin tyrosine phosphorylation was observed in podocytes expressing a membrane-targeted nephrin construct that lacks the extracellular domain. We propose, integrin-activation based signaling might be responsible for nephrin phosphorylation rather than engagment of the nephrin extracellular domain by a ligand.  相似文献   

4.
The kidney filter represents a unique assembly of podocyte epithelial cells that tightly enwrap the glomerular capillaries with their foot processes and the interposed slit diaphragm. So far, very little is known about the guidance cues and polarity signals required to regulate proper development and maintenance of the glomerular filtration barrier. We now identify Par3, Par6, and atypical protein kinase C (aPKC) polarity proteins as novel Neph1-Nephrin-associated proteins. The interaction was mediated through the PDZ domain of Par3 and conserved carboxyl terminal residues in Neph1 and Nephrin. Par3, Par6, and aPKC localized to the slit diaphragm as shown in immunofluorescence and immunoelectron microscopy. Consistent with a critical role for aPKC activity in podocytes, inhibition of glomerular aPKC activity with a pseudosubstrate inhibitor resulted in a loss of regular podocyte foot process architecture. These data provide an important link between cell recognition mediated through the Neph1-Nephrin complex and Par-dependent polarity signaling and suggest that this molecular interaction is essential for establishing the three-dimensional architecture of podocytes at the kidney filtration barrier.  相似文献   

5.
The slit diaphragm (SD) is an intercellular junction between renal glomerular epithelial cells (podocytes) that is essential for permselectivity in glomerular ultrafiltration. The SD components, nephrin and Neph1, assemble a signaling complex in a tyrosine phosphorylation dependent manner, and regulate the unique actin cytoskeleton of podocytes. Mutations in the NPHS1 gene that encodes nephrin cause congenital nephrotic syndrome (CNS), which is characterized by the loss of the SD and massive proteinuria. Recently, we have identified the expression of the transmembrane glycoprotein signal regulatory protein α (SIRPα) at the SD. In the present study, we analyzed the expression of SIRPα in developing kidneys, in kidneys from CNS patients and in proteinuric rat models. The possibility that SIRPα interacts with known SD proteins was also investigated. SIRPα was concentrated at the SD junction during the maturation of intercellular junctions. In the glomeruli of CNS patients carrying mutations in NPHS1, where SD formation is disrupted, the expression of SIRPα as well as Neph1 and nephrin was significantly decreased, indicating that SIRPα is closely associated with the nephrin complex. Indeed, SIRPα formed hetero-oligomers with nephrin in cultured cells and in glomeruli. Furthermore, the cytoplasmic domain of SIRPα was highly phosphorylated in normal glomeruli, and its phosphorylation was dramatically decreased upon podocyte injury in?vivo. Thus, SIRPα interacts with nephrin at the SD, and its phosphorylation is dynamically regulated in proteinuric states. Our data provide new molecular insights into the phosphorylation events triggered by podocyte injury. Structured digital abstract ? Sirp-alpha?physically interacts?with?Nephrin?by?anti bait coimmunoprecipitation?(View interaction) ? Sirp-alpha?physically interacts?with?Nephrin?by?anti tag coimmunoprecipitation?(View interaction).  相似文献   

6.
7.
Actin dynamics determines podocyte morphology during development and in response to podocyte injury and might be necessary for maintaining normal podocyte morphology. Because podocyte intercellular junction receptor Nephrin plays a role in regulating actin dynamics, and given the described role of cofilin in actin filament polymerization and severing, we hypothesized that cofilin-1 activity is regulated by Nephrin and is necessary in normal podocyte actin dynamics. Nephrin activation induced cofilin dephosphorylation via intermediaries that include phosphatidylinositol 3-kinase, SSH1, 14-3-3, and LIMK in a cell culture model. This Nephrin-induced cofilin activation required a direct interaction between Nephrin and the p85 subunit of phosphatidylinositol 3-kinase. In a similar fashion, cofilin-1 dephosphorylation was observed in a rat model of podocyte injury at a time when foot process spreading is initially observed. To investigate the necessity of cofilin-1 in the glomerulus, podocyte-specific Cfl1 null mice were generated. Cfl1 null podocytes developed normally. However, these mice developed persistent proteinuria by 3 months of age, although they did not exhibit foot process spreading until 8 months, when the rate of urinary protein excretion became more exaggerated. In a mouse model of podocyte injury, protamine sulfate perfusion of the Cfl1 mutant mouse induced a broadened and flattened foot process morphology that was distinct from that observed following perfusion of control kidneys, and mutant podocytes did not recover normal structure following additional perfusion with heparin sulfate. We conclude that cofilin-1 is necessary for maintenance of normal podocyte architecture and for actin structural changes that occur during induction and recovery from podocyte injury.  相似文献   

8.
The kidney filtration barrier is formed by the combination of endothelial cells, basement membrane and epithelial cells called podocytes. These specialized actin-rich cells form long and dynamic protrusions, the foot processes, which surround glomerular capillaries and are connected by specialized intercellular junctions, the slit diaphragms. Failure to maintain the filtration barrier leads to massive proteinuria and nephrosis. A number of proteins reside in the slit diaphragm, notably the transmembrane proteins Nephrin and Neph1, which are both able to act as tyrosine phosphorylated scaffolds that recruit cytoplasmic effectors to initiate downstream signaling. While association between tyrosine-phosphorylated Neph1 and the SH2/SH3 adaptor Grb2 was shown in vitro to be sufficient to induce actin polymerization, in vivo evidence supporting this finding is still lacking. To test this hypothesis, we generated two independent mouse lines bearing a podocyte-specific constitutive inactivation of the Grb2 locus. Surprisingly, we show that mice lacking Grb2 in podocytes display normal renal ultra-structure and function, thus demonstrating that Grb2 is not required for the establishment of the glomerular filtration barrier in vivo. Moreover, our data indicate that Grb2 is not required to restore podocyte function following kidney injury. Therefore, although in vitro experiments suggested that Grb2 is important for the regulation of actin dynamics, our data clearly shows that its function is not essential in podocytes in vivo, thus suggesting that Grb2 rather plays a secondary role in this process.  相似文献   

9.
The podocyte proteins Neph1 and nephrin organize a signaling complex at the podocyte cell membrane that forms the structural framework for a functional glomerular filtration barrier. Mechanisms regulating the movement of these proteins to and from the membrane are currently unknown. This study identifies a novel interaction between Neph1 and the motor protein Myo1c, where Myo1c plays an active role in targeting Neph1 to the podocyte cell membrane. Using in vivo and in vitro experiments, we provide data supporting a direct interaction between Neph1 and Myo1c which is dynamic and actin dependent. Unlike wild-type Myo1c, the membrane localization of Neph1 was significantly reduced in podocytes expressing dominant negative Myo1c. In addition, Neph1 failed to localize at the podocyte cell membrane and cell junctions in Myo1c-depleted podocytes. We further demonstrate that similarly to Neph1, Myo1c also binds nephrin and reduces its localization at the podocyte cell membrane. A functional analysis of Myo1c knockdown cells showed defects in cell migration, as determined by a wound assay. In addition, the ability to form tight junctions was impaired in Myo1c knockdown cells, as determined by transepithelial electric resistance (TER) and bovine serum albumin (BSA) permeability assays. These results identify a novel Myo1c-dependent molecular mechanism that mediates the dynamic organization of Neph1 and nephrin at the slit diaphragm and is critical for podocyte function.  相似文献   

10.
11.
There are several lines of evidence that the podocyte slit diaphragm (SD), which serves as a structural framework for the filtration barrier in kidney glomerulus, also plays an essential role as a signaling platform. Several SD components including nephrin and TRPC6 are known to be phosphorylated by a Src family tyrosine kinase (SFK), Fyn. Here we have characterized Neph1, another SD component, as a novel substrate of SFK. Fyn interacts with and phosphorylates the cytoplasmic domain of Neph1 in vitro and in intact cells. Peptide mass fingerprinting and site-directed mutagenesis identified several tyrosine phosphorylation sites. In pull-down assays using rat glomerular lysates, Neph1 but not nephrin specifically binds to adaptor protein Grb2 and tyrosine kinase Csk in a phosphorylation-dependent manner. Both tyrosine 637 and 638 of Neph1 are crucial for Neph1-Grb2 binding. Phosphorylation of tyrosine 637 is significantly up-regulated in in vivo models of podocyte injury. Furthermore, Neph1 attenuates ERK activation elicited by Fyn, and this inhibitory effect requires the intact binding motif for the Grb2 SH2 domain. Our results shown here demonstrate that Neph1 is a novel in vivo substrate of SFK and suggest that Neph1 modulates ERK signaling through phosphorylation-dependent interaction with Grb2. Thus, SFK orchestrates a wide spectrum of protein-protein interactions and intracellular signaling networks at SD through tyrosine phosphorylation.  相似文献   

12.
In most forms of glomerular diseases, loss of size selectivity by the kidney filtration barrier is associated with changes in the morphology of podocytes. The kidney filtration barrier is comprised of the endothelial lining, the glomerular basement membrane, and the podocyte intercellular junction, or slit diaphragm. The cell adhesion proteins nephrin and neph1 localize to the slit diaphragm and transduce signals in a Src family kinase Fyn-mediated tyrosine phosphorylation-dependent manner. Studies in cell culture suggest nephrin phosphorylation-dependent signaling events are primarily involved in regulation of actin dynamics and lamellipodium formation. Nephrin phosphorylation is a proximal event that occurs both during development and following podocyte injury. We hypothesized that abrogation of nephrin phosphorylation following injury would prevent nephrin-dependent actin remodeling and foot process morphological changes. Utilizing a biased screening approach, we found nonreceptor Src homology 2 (sh2) domain-containing phosphatase Shp2 to be associated with phosphorylated nephrin. We observed an increase in nephrin tyrosine phosphorylation in the presence of Shp2 in cell culture studies. In the human glomerulopathies minimal-change nephrosis and membranous nephropathy, there is an increase in Shp2 phosphorylation, a marker of increased Shp2 activity. Mouse podocytes lacking Shp2 do not develop foot process spreading when subjected to podocyte injury in vivo using protamine sulfate or nephrotoxic serum (NTS). In the NTS model, we observed a lack of foot process spreading in mouse podocytes with Shp2 deleted and smaller amounts of proteinuria. Taken together, these results suggest that Shp2-dependent signaling events are necessary for changes in foot process structure and function following injury.  相似文献   

13.
Subepithelial immune complex deposition in glomerular disease causes local inflammation and proteinuria by podocyte disruption. A rat model of membranous nephropathy, the passive Heymann nephritis, suggests that Abs against specific podocyte Ags cause subepithelial deposit formation and podocyte foot process disruption. In this study, we present a mouse model in which a polyclonal sheep anti-mouse podocyte Ab caused subepithelial immune complex formation. Mice developed a nephrotic syndrome with severe edema, proteinuria, hypoalbuminemia, and elevated cholesterol and triglycerides. Development of proteinuria was biphasic: an initial protein loss was followed by a second massive increase of protein loss beginning at approximately day 10. By histology, podocytes were swollen. Electron microscopy revealed 60-80% podocyte foot process effacement and subepithelial deposits, but no disruption of the glomerular basement membrane. Nephrin and synaptopodin staining was severely disrupted, and podocyte number was reduced in anti-podocyte serum-treated mice, indicating severe podocyte damage. Immunohistochemistry detected the injected anti-podocyte Ab exclusively along the glomerular filtration barrier. Immunoelectron microscopy localized the Ab to podocyte foot processes and the glomerular basement membrane. Similarly, immunohistochemistry localized mouse IgG to the subepithelial space. The third complement component (C3) was detected in a linear staining pattern along the glomerular basement membrane and in the mesangial hinge region. However, C3-deficient mice were not protected from podocyte damage, indicating a complement-independent mechanism. Twenty proteins were identified as possible Ags to the sheep anti-podocyte serum by mass spectrometry. Together, these data establish a reproducible model of immune-mediated podocyte injury in mice with subepithelial immune complex formation.  相似文献   

14.
Nephrin--a unique structural and signaling protein of the kidney filter   总被引:4,自引:0,他引:4  
Since the discovery of nephrin, the first integral component of the slit diaphragm to be identified, the podocyte slit pore has become a major focus in research concerning the glomerular filtration barrier. Nephrin is a central component of the glomerular ultrafilter, with both structural and signaling functions. The extracellular domain of nephrin and other components of the slit diaphragm seem to form a porous molecular sieve. The intracellular domain of nephrin is associated with linker proteins, such as CD2-associated protein and Nck proteins that can connect nephrin to the actin cytoskeleton. Alterations in nephrin interactions with other proteins during development or injury can lead to complex signaling reactions aimed at establishing or restoring the filter function.  相似文献   

15.
Nephrin is a signalling cell-cell adhesion protein of the Ig superfamily and the first identified component of the slit diaphragm that forms the critical and ultimate part of the glomerular ultrafiltration barrier. The extracellular domains of the nephrin molecules form a network of homophilic and heterophilic interactions building the structural scaffold of the slit diaphragm between the podocyte foot processes. The intracellular domain of nephrin is connected indirectly to the actin cytoskeleton, is tyrosine phosphorylated, and mediates signalling from the slit diaphragm into the podocytes. CD2AP, podocin, Fyn kinase, and phosphoinositide 3-kinase are reported intracellular interacting partners of nephrin, although the biological roles of these interactions are unclarified. To characterize the structural properties and protein-protein interactions of the nephrin intracellular domain, we produced a series of recombinant nephrin proteins. These were able to bind all previously identified ligands, although the interaction with CD2AP appeared to be of extremely low stoichiometry. Fyn phosphorylated nephrin proteins efficiently in vitro. This phosphorylation was required for the binding of phosphoinositide 3-kinase, and significantly enhanced binding of Fyn itself. A protein of 190 kDa was found to associate with the immobilized glutathione S-transferase-nephrin. Peptide mass fingerprinting and amino acid sequencing identified this protein as IQGAP1, an effector protein of small GTPases Rac1 and Cdc42 and a putative regulator of cell-cell adherens junctions. IQGAP1 is expressed in podocytes at significant levels, and could be found at the immediate vicinity of the slit diaphragm. However, further studies are needed to confirm the biological significance of this interaction and its occurrence in vivo.  相似文献   

16.
Glomerular injury is often characterized by the effacement of podocytes, loss of slit diaphragms, and proteinuria. Renal ischemia or the loss of blood flow to the kidneys has been widely associated with tubular and endothelial injury but rarely has been shown to induce podocyte damage and disruption of the slit diaphragm. In this study, we have used an in vivo rat ischemic model to demonstrate that renal ischemia induces podocyte effacement with loss of slit diaphragm and proteinuria. Biochemical analysis of the ischemic glomerulus shows that ischemia induces rapid loss of interaction between slit diaphragm junctional proteins Neph1 and ZO-1. To further understand the effect of ischemia on molecular interactions between slit diaphragm proteins, a cell culture model was employed to study the binding between Neph1 and ZO-1. Under physiologic conditions, Neph1 co-localized with ZO-1 at cell-cell contacts in cultured human podocytes. Induction of injury by ATP depletion resulted in rapid loss of Neph1 and ZO-1 binding and redistribution of Neph1 and ZO-1 proteins from cell membrane to the cytoplasm. Recovery resulted in increased Neph1 tyrosine phosphorylation, restoring Neph1 and ZO-1 binding and their localization at the cell membrane. We further demonstrate that tyrosine phosphorylation of Neph1 mediated by Fyn results in significantly increased Neph1 and ZO-1 binding, suggesting a critical role for Neph1 tyrosine phosphorylation in reorganizing the Neph1-ZO-1 complex. This study documents that renal ischemia induces dynamic changes in the molecular interactions between slit diaphragm proteins, leading to podocyte damage and proteinuria.  相似文献   

17.
18.
Neph proteins are evolutionarily conserved membrane proteins of the immunoglobulin superfamily that control the formation of specific intercellular contacts. Cell recognition through these proteins is essential in diverse cellular contexts such as patterning of the compound eye in Drosophila melanogaster, neuronal connectivity in Caenorhabditis elegans, and the formation of the kidney filtration barrier in mammals. Here we identify the PDZ and BAR domain protein PICK1 (protein interacting with C-kinase 1) as a Neph-interacting protein. Binding required dimerization of PICK1, was dependent on PDZ domain protein interactions, and mediated stabilization of Neph1 at the plasma membrane. Moreover, protein kinase C (PKCα) activity facilitated the interaction through releasing Neph proteins from their binding to the multidomain scaffolding protein zonula occludens 1 (ZO-1), another PDZ domain protein. In Drosophila, the Neph homologue Roughest is essential for sorting of interommatidial precursor cells and patterning of the compound eye. RNA interference-mediated knockdown of PICK1 in the Drosophila eye imaginal disc caused a Roughest destabilization at the plasma membrane and a phenotype that resembled rst mutation. These data indicate that Neph proteins and PICK1 synergistically regulate cell recognition and contact formation.  相似文献   

19.
Blood filtration in the kidney glomerulus is essential for physiological homeostasis. The filtration apparatus of the kidney glomerulus is composed of three distinct components: the fenestrated endothelial cells, the glomerular basement membrane, and interdigitating foot processes of podocytes that form the slit diaphragm. Recent studies have demonstrated that podocytes play a crucial role in blood filtration and in the pathogenesis of proteinuria and glomerular sclerosis; however, the molecular mechanisms that organize the podocyte filtration barrier are not fully understood. In this study, we suggest that tight junction protein 1 (Tjp1 or ZO-1), which is encoded by Tjp1 gene, plays an essential role in establishing the podocyte filtration barrier. The podocyte-specific deletion of Tjp1 down-regulated the expression of podocyte membrane proteins, impaired the interdigitation of the foot processes and the formation of the slit diaphragm, resulting in glomerular dysfunction. We found the possibility that podocyte filtration barrier requires the integration of two independent units, the pre-existing epithelial junction components and the newly synthesized podocyte-specific components, at the final stage in glomerular morphogenesis, for which Tjp1 is indispensable. Together with previous findings that Tjp1 expression was decreased in glomerular diseases in human and animal models, our results indicate that the suppression of Tjp1 could directly aggravate glomerular disorders, highlights Tjp1 as a potential therapeutic target.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号