首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J J Hogan  R R Gutell  H F Noller 《Biochemistry》1984,23(14):3322-3330
Yeast 40S ribosomal subunits have been reacted with kethoxal to probe the conformation of 18S rRNA. Over 130 oligonucleotides were isolated by diagonal electrophoresis and sequenced, allowing identification of 48 kethoxal-reactive sites in the 18S rRNA chain. These results generally support a secondary structure model for 18S rRNA derived from comparative sequence analysis. Significant reactivity at positions 1436 and 1439, in a region shown to be base paired by comparative analysis, lends support to the earlier suggestion [Chapman, N.M., & Noller, H.F. (1977) J. Mol. Biol 109, 131-149] that part of the 3'-major domain of 16S-like rRNAs may undergo a biologically significant conformational rearrangement. Modification of positions in 18S rRNA analogous to those previously found for Escherichia coli 16S rRNA argues for extensive structural homology between 30S and 40S ribosomal subunits, particularly in regions thought to be directly involved in translation.  相似文献   

2.
J J Hogan  R R Gutell  H F Noller 《Biochemistry》1984,23(14):3330-3335
The conformation and accessibility of 26S rRNA in yeast 60S ribosomal subunits were probed with kethoxal. Oligonucleotides originating from reactive sites were isolated by diagonal electrophoresis and sequenced. From over 70 oligonucleotide sequences, 26 kethoxal-reactive sites could be placed in the 26S rRNA sequence. These are in close agreement with a proposed secondary structure model for the RNA that is based on comparative sequence analysis. At least seven kethoxal-reactive sites in yeast 26S rRNA are in positions that are exactly homologous to reactive positions in E. coli 23S rRNA; each of these sites has previously been implicated in some aspect of ribosomal function.  相似文献   

3.
The binding of ribosomal proteins L25, L18, and L5 to 5 S RNA results in a conformational change and a destabilization of the 5 S RNA molecule. The changes observed in the near ultraviolet circular dichroism (CD) spectra and in the melting profiles indicate an increase in base stacking uith an accompanying increase in asymmetry of the bases and a decrease in the conformational stability of the 5 S RNA. These results are consistent with the interpretation that the binding of these proteins increases the stacking of specific single-stranded bases in 5 S RNA and aligns them in helical arrays, resulting in a conformation which facilitates base-pairing with nucleotide segment(s) of the ribosomal 23 S RNA or the transfer RNA (or both). The simple and precise difference CD method described here is potentially useful for studying subtle conformational changes of other nucleic acid-protein interactions.  相似文献   

4.
Ribosomal protein L5, a 5S rRNA binding protein in the large subunit, is composed of a five-stranded antiparallel beta-sheet and four alpha-helices, and folds in a way that is topologically similar to the ribonucleprotein (RNP) domain [Nakashima et al., RNA 7, 692-701, 20011. The crystal structure of ribosomal protein L5 (BstL5) from Bacillus stearothermophilus suggests that a concave surface formed by an anti-parallel beta-sheet and long loop structures are strongly involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurred at beta-strands and loop structures in BstL5. The mutation of Lys33 at the beta 1-strand caused a significant reduction in 5S rRNA binding. In addition, the Arg92, Phe122, and Glu134 mutations on the beta2-strand, the alpha3-beta4 loop, and the beta4-beta5 loop, respectively, resulted in a moderate decrease in the 5S rRNA binding affinity. In contrast, mutation of the conserved residue Pro65 at the beta2-strand had little effect on the 5S rRNA binding activity. These results, taken together with previous results, identified Lys33, Asn37, Gln63, and Thr90 on the beta-sheet structure, and Phe77 at the beta2-beta3 loop as critical residues for the 5S rRNA binding. The contribution of these amino acids to 5S rRNA binding was further quantitatively evaluated by surface plasmon resonance (SPR) analysis by the use of BIAcore. The results showed that the amino acids on the beta-sheet structure are required to decrease the dissociation rate constant for the BstL5-5S rRNA complex, while those on the loops are to increase the association rate constant for the BstL5-5S rRNA interaction.  相似文献   

5.
The ribosome is a macromolecular assembly that is responsible for protein biosynthesis in all organisms. It is composed of two-subunit, ribonucleoprotein particles that translate the genetic material into an encoded polypeptides. The small subunit is the site of codon-anticodon interaction between the messenger RNA (mRNA) and transfer RNA (tRNA) substrates, and the large subunit catalyses peptide bond formation. The peptidyltransferase activity is fulfilled by 23S rRNA, which means that ribosome is a ribozyme. 5S rRNA is a conserved component of the large ribosomal subunit that is thought to enhance protein synthesis by stabilizing ribosome structure. This paper shortly summarises new results obtained on the structure and function of 5S rRNA.  相似文献   

6.
5 S RNA was isolated from Saccharomyces cerevisiae grown in the presence of 32P-phosphate and digested with nuclease S1, a single-strand specific nuclease. Two different procedures were employed to determine the sites of attack on the RNA. First, 5 S RNA was isolated from nuclease S1 digests, digested to completion with ribonuclease T1, and then 'fingerprinted' by two-dimensional electrophoresis. Quantitation of each of the characteristic RNAase T1-derived oligonucleotides was employed to determine the relative susceptibility of various regions of the molecule to nuclease S1. A second procedure to define nuclease S1-susceptible sites in the molecule employed polyacrylamide gel electrophoretic fractionation of nuclease S1 digests followed by identification of the nucleotide sequences of the released RNA fragments. Both procedures showed that the region of the molecule between residues 9 and 60 was most susceptible to nuclease S1, with preferential cleavage occurring between residues 12-25 and 50-60. These results are discussed in relation to a proposed model for the secondary structure of yeast 5 S RNA.  相似文献   

7.
Optimal conditions for reductive alkylation of ribosomal proteins in their native and denatured states were examined. The relative accessibility of rat liver ribosomal proteins to reductive alkylation was then examined. Intact ribosomes were firs labeled with [14C]formaldehyde and NaBH4. The proteins were then separated from RNA, denatured in 6 M guanidine, and labeled again using formaldehyde and NaB3H4. The relative accessibility of individual proteins to labeling in the intact state could thus be determined from their 3H/14C ratios following separation by two-dimensional electrophoresis. The results suggest that proteins S6, S11, S26, L3, and L35 are less accessible to labeling while proteins S1, S15, L11, L12, L16, and L24 appear relatively more accessible. The accessibility of individual proteins in ribosomes in different conformational states were then compared. The results indicated that S3, L7, and L36 are likely to be involved in a structural difference when normal polysomes and normal monomers are compared. Also, that S26 and L35, and probably S3, S20, L7, L8, L24, L27, L28 and L34 appear to be involved in a ribosomal conformation change induced by ethionine intoxication.  相似文献   

8.
A library of random mutations in Xenopus ribosomal protein L5 was generated by error-prone PCR and used to delineate the binding domain for 5S rRNA. All but one of the amino acid substitutions that affected binding affinity are clustered in the central region of the protein. Several of the mutations are conservative substitutions of non-polar amino acid residues that are unlikely to form energetically significant contacts to the RNA. Thermal denaturation, monitored by circular dichroism (CD), indicates that L5 is not fully structured and association with 5S rRNA increases the t(m) of the protein by 16 degrees C. L5 induces changes in the CD spectrum of 5S rRNA, establishing that the complex forms by a mutual induced fit mechanism. Deuterium exchange reveals that a considerable amount of L5 is unstructured in the absence of 5S rRNA. The fluorescence emission of W266 provides evidence for structural changes in the C-terminal region of L5 upon binding to 5S rRNA; whereas, protection experiments demonstrate that the N terminus remains highly sensitive to protease digestion in the complex. Analysis of the amino acid sequence of L5 by the program PONDR predicts that the N and C-terminal regions of L5 are intrinsically disordered, but that the central region, which contains three essential tyrosine residues and other residues important for binding to 5S rRNA, is likely to be structured. Initial interaction of the protein with 5S rRNA likely occurs through this region, followed by induced folding of the C-terminal region. The persistent disorder in the N-terminal domain is possibly exploited for interactions between the L5-5S rRNA complex and other proteins.  相似文献   

9.
Summary In order to study the organization of the ribosomal RNA genes of Mycoplasma hyopneumoniae the rRNA genes were cloned in phage vectors EMBL3 and EMBL4. By subcloning the restriction fragments into various plasmids and analysing the resulting clones by Southern and Northern blot hybridization, a restriction map of the rRNA genes was generated and the organization of the rRNA genes was determined. The results show that the genes for the 16S and 23S rRNAs are closely spaced and occur only once in the genome, whereas the 5S rRNA gene is separated from the other two genes by more than 4 kb.  相似文献   

10.
11.
12.
Ribosomal protein L9 consists of two globular alpha/beta domains separated by a nine-turn alpha-helix. We examined the rRNA environment of L9 by chemical footprinting and directed hydroxyl radical probing. We reconstituted L9, or individual domains of L9, with L9-deficient 50 S subunits, or with deproteinized 23 S rRNA. A footprint was identified in domain V of 23 S rRNA that was mainly attributable to N-domain binding. Fe(II) was tethered to L9 via cysteine residues introduced at positions along the alpha-helix and in the C-domain, and derivatized proteins were reconstituted with L9-deficient subunits. Directed hydroxyl radical probing targeted regions of domains I, III, IV, and V of 23 S rRNA, reinforcing the view that 50 S subunit architecture is typified by interwoven rRNA domains. There was a striking correlation between the cleavage patterns from the Fe(II) probes attached to the alpha-helix and their predicted orientations, constraining both the position and orientation of L9, as well as the arrangement of specific elements of 23 S rRNA, in the 50 S subunit.  相似文献   

13.
The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.  相似文献   

14.
15.
P W Gray  R B Hallick 《Biochemistry》1979,18(9):1820-1825
Ribosomal RNA (5S) from Euglena gracilis chloroplasts was isolated by preparative electrophoresis, labeled in vitro with 125I, and hybridized to restriction nuclease fragments from chloroplast DNA or cloned chloroplast DNA segments. Euglena chloroplast 5S rRNA is encoded in the chloroplast genome. The coding region of 5S rRNA has been positioned within the 5.6 kilobase pair (kbp) repeat which also codes for 16S and 23S rRNA. There are three 5S rRNA genes on the 130-kbp genome. The order of RNAs within a single repeat is 16S-23S-5S. The organization and size of the Euglena chloroplast ribosomal repeat is very similar to the ribosomal RNA operons of Escherichia coli.  相似文献   

16.
The complete nucleotide sequence of R. meliloti 5S ribosomal RNA has been determined and compared with the already known sequence of A. tumefaciens 5S rRNA (Vandenberghe et al., 1985, Eur. J. Biochem., 149, 537-542) and of other 5S rRNAs from Rodobacteria Alpha-2 (Wolters et al., 1988, Nucleic Acids Res., 16, rl-r70). The differences found at eight positions (23, 73, 83, 72 in helical fragments; 16, 40, 88 in loops; 54 in bulge), which might affect secondary structures of 5S rRNA, are small. Moreover, the sequence analysis specifies both variable and common positions in 5S rRNA secondary structure of Rodobacteria Alpha-2.  相似文献   

17.
Interrelationships among 5 S, 5.8 S, and 28 S rRNA were probed by methods employed in the accompanying report (Choi, Y. C. (1985) J. Biol. Chem. 260, 12769-12772). Two complexes were isolated from 20 S ribonucleoprotein (RNP) fraction and 60 S subunit. The 20 S RNP fraction was found to contain the 3'-340 nucleotide fragment (domain VII) in association with 5 S rRNA. The 60 S subunit contained a stable complex consisting of the 5'-upstream portion (4220-4462, domain VI and VII), the 3'-downstream portion (4463-4802, domain VII) of 3'-583 nucleotides fragment, and 5.8 S rRNA. By computer analysis and hybridization, the 5'-upstream portion was found to contain the 5.8 S rRNA contact site. By affinity chromatography, the 3'-downstream portion was found to contain the 5 S rRNA association site. Furthermore, by comparison with the secondary structure of 28 S rRNA proposed by Hadjiolov et al. (Hadjiolov, A. A., Georgiev, O. I., Nosikov, V. V., and Yavachev, L. P. (1984) Nucleic Acids Res. 12, 3677-3693), it was found that domain VII is capable of binding 5.8 S rRNA and 5 S rRNA juxtaposed to each other. Accordingly, a model was proposed to indicate that a possible contact site for 5.8 S rRNA is within the region surrounding the alpha-sarcin site (4333-4350) and is a possible association site of 5 S rRNA within the 3'-downstream portion (4463-4802) of the 3'-583 nucleotide fragment (4220-4802).  相似文献   

18.
19.
DiNitto JP  Huber PW 《Biochemistry》2001,40(42):12645-12653
The formation of the Xenopus L5-5S rRNA complex depends on nonelectrostatic interactions. Fluorescence assays with 1-anilino-8-naphthalenesulfonate demonstrate that a hydrophobic region on L5 becomes exposed upon removal of bound 5S rRNA by treatment with ribonucleases. Several conserved aromatic amino acids, mostly tyrosines, were identified by comparative sequence analysis and changed individually to alanine. Substitution with alanine at any of three positions, Y86, Y99, or Y226, essentially abolishes RNA-binding activity, whereas those made at Y95 and Y207 have more modest effects. Replacement with phenylalanine at Y86 and Y226 does not change binding affinity, indicating that the aromatic ring of the side chain, not the hydroxyl group, is the critical functionality for binding. Alternatively, the phenolic hydroxyls at Y99 and Y207 do contribute to binding. The structural integrity of the mutant proteins was assessed using thermal denaturation and limited digestion with proteases. The T(m) of Y99A is 10 degrees C lower than that of the wild-type protein, and there are some differences in the protease digestion patterns that together indicate the structure of this mutant has been significantly perturbed. The structures of the other variants are not detectably different from the wild-type protein. These results provide evidence that intermolecular stacking interactions involving at least two tyrosine residues, Y86 and Y226, are necessary for formation of the L5-5S rRNA complex and can account, at least in part, for the contribution nonelectrostatic interactions make to the free energy of binding.  相似文献   

20.
The three tandemly repeated ribosomal RNA operons from the chloroplast genome of Euglena gracilis Klebs, Pringsheim Strain Z each contain a 5 S rRNA gene distal to the 23 S rRNA gene (Gray, P.W., and Hallick, R.B. (1979) Biochemistry 18, 1820-1825). We have cloned two distinct 5 S rRNA genes, and determined the DNA sequence of the genes, their 5'- and 3'-flanking sequences, and the 3'-end of the adjacent 23 S rRNA genes. The two genes exhibit sequence polymorphism at five bases within the "procaryotic loop" coding region, as well as internal restriction endonuclease site heterogeneity. These restriction endonuclease site polymorphisms are evident in chloroplast DNA, and not just the cloned examples of 5 S genes. Chloroplast 5 S rRNA was isolated, end labeled, and sequenced by partial enzymatic degradation. The same polymorphisms found in 5 S rDNA are present in 5 S rRNA. Therefore, both types of 5 S rRNA genes are transcribed and are present in chloroplast ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号