首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Liquid culture assays revealed a previously unreported capacity for Mycobacterium bovis BCG, M. gordonae, and M. marinum to oxidize CO and for M. smegmatis to consume molecular hydrogen. M. bovis BCG, M. gordonae, M. smegmatis, and M. tuberculosis H37Ra oxidized CO at environmentally relevant concentrations (<50 ppm); H2 oxidation by M. gordonae and M. smegmatis also occurred at environmentally relevant concentrations (<10 ppm). CO was not consumed by M. avium or M. microti, although the latter appeared to possess CO dehydrogenase (CODH) genes based on PCR results with primers designed for the CODH large subunit, coxL. M. smegmatis and M. gordonae oxidized CO under suboxic (10 and 1% atmospheric oxygen) and anoxic conditions in the presence of nitrate; no oxidation occurred under anoxic conditions without nitrate. Similar results were obtained for H2 oxidation by M. smegmatis. Phylogenetic analyses of coxL PCR products indicated that mycobacterial sequences form a subclade distinct from that of other bacterial coxL, with limited differentiation among fast- and slow-growing strains.  相似文献   

2.
Summary Production of trace levels of carbon monoxide was consistently observed in the off-gas of a laboratory anaerobic digester fed Waste Activated Sludge. Inocula from this digester was enriched for acetate and methanol utilizing methanogenic populations. These enriched inocula were then monitored in batch assays for carbon monoxide and hydrogen production. Results demonstrated that carbon monoxide is produced during methanogenesis on both substrates. Subsequent utilization of CO was observed to occur after methane production was essentially complete for the assays conducted with methanol. Carbon monoxide evolution during methanogenesis on acetate displayed a markedly different trend from that observed from methanol.  相似文献   

3.
International Microbiology - Methanol is one of the most widely produced organic substrates from syngas and can serve as a bio-feedstock to cultivate acetogenic bacteria which allows a major...  相似文献   

4.
5.
Whole cells of Clostridium thermoaceticum, crude extracts of such cells as well as the supernatant of 100 000 × g centrifugations catalyse the reduction of carbon monoxide to methanol in the presence of viologens or cobalt sepulchrate. Without such a mediator methanol could not be detected. The reaction shows a marked optimum at pH 5. The incubation of [5-14C]methyltetrahydrofolate led only to the formation of 14C-labeled ethanol; the radioactivity in methanol was negligible. The reaction seems to be catalysed by carbon monoxide dehydrogenase.  相似文献   

6.
7.
Microbial growth on carbon monoxide   总被引:14,自引:0,他引:14  
The utilization of carbon monoxide as energy and/or carbon source by different physiological groups of bacteria is described and compared. Utilitarian CO oxidation which is coupled to the generation of energy for growth is achieved by aerobic and anaerobic eu- and archaebacteria. They belong to the physiological groups of aerobic carboxidotrophic, facultatively anaerobic phototrophic, and anaerobic acetogenic, methanogenic or sulfate-reducing bacteria. The key enzyme in CO oxidation is CO dehydrogenase which is a molybdo iron-sulfur flavoprotein in aerobic CO-oxidizing bacteria and a nickel-containing iron-sulfur protein in anaerobic ones. In carboxidotrophic and phototrophic bacteria, the CO-born CO2 is fixed by ribulose bisphosphate carboxylase in the reductive pentose phosphate cycle. In acetogenic, methanogenic, and probably in sulfate-reducing bacteria, CODH/acetyl-CoA synthase directly incorporates CO into acetyl-CoA.In plasmid-harbouring carboxidotrophic bacteria, CO dehydrogenase as well as enzymes involved in CO2 fixation or hydrogen utilization are plasmid-encoded. Structural genes encoding CO dehydrogenase were cloned from carboxidotrophic, acetogenic and methanogenic bacteria. Although they are clustered in each case, they are genetically distinct.Soil is a most important biological sink for CO in nature. While the physiological microbial groups capable of CO oxidation are well known, the type and nature of the microorganisms actually representing this sink are still enigmatic. We also tried to summarize the little information available on the nutritional and physicochemical requirements determining the sink strength. Because CO is highly toxic to respiring organisms even in low concentrations, the function of microbial activities in the global CO cycle is critical.  相似文献   

8.
9.
10.
Carbon monoxide is the most abundant atmospheric pollutant released by our technological society. The gas is also a natural by-product of different mammalian, plant and bacterial cell systems. This review describes a few of these cellular CO-evolving activities as part of a natural biological cycle, which ultimately depends upon certain bacteria to oxidize CO to carbon dioxide. Most microbes oxidize CO adventitiously, or accidentally, but one cell can use the gas as its sole energy substrate for growth. The ability of this microorganism to form efficiently both H2 and CO2 from CO released by industrial coal gasification procedures is suggested.  相似文献   

11.
12.
Life with carbon monoxide   总被引:5,自引:0,他引:5  
  相似文献   

13.
14.
15.
16.
17.
18.
The oxygen dissociation curve and Bohr effect were measured in normal whole blood as a function of carboxyhemoglobin concentration [HbCO]. pH was changed by varying CO2 concentration (CO2 Bohr effect) or by addition of isotonic NaOH or HCl at constant PCO2 (fixed acid Bohr effect). As [HbCO] varied through the range of 2, 25, 50, and 75%, P50 was 26.3, 18.0, 11.6, and 6.5 mmHg, respectively. CO2 Bohr effect was highest at low oxygen saturations. This effect did not change as [HbCO] was increased. However, as [HbCO] was increased from 2 to 75%, the fixed acid Bohr factor increased in magnitude from -0.20 to -0.80 at very low oxygen saturations. The effect of molecular CO2 binding (carbamino) on oxygen affinity was eliminated at high [HbCO]. These results are consistent with the initial binding of O2 or CO to the alpha-chain of hemoglobin. The results also suggest that heme-heme interaction is different for oxygen than for carbon monoxide.  相似文献   

19.
20.
Growth of Seliberia carboxydohydrogena was inhibited by CO at 10 to 40% (v/v), resulting in increased substrate utilization and enhanced synthesis of cytochromes and cyclopropane and saturated fatty acids. The bacteria showed increased formation of new membrane structures, with pronounced folding of their cell walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号