首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wnts are secreted proteins with functions in differentiation, development and cell proliferation. Wnt signaling has also been implicated in neuromuscular junction formation and may function in synaptic plasticity in the adult as well. Secreted frizzled-related proteins (Sfrps) such as Sfrp1 can function as inhibitors of Wnt signaling. In the present study a potential role of Wnt signaling in denervation was examined by comparing the expression levels of Sfrp1 and key proteins in the canonical Wnt pathway, Dishevelled, glycogen synthase kinase 3β and β-catenin, in innervated and denervated rodent skeletal muscle. Sfrp1 mRNA and immunoreactivity were found to be up-regulated in mouse hemidiaphragm muscle following denervation. Immunoreactivity, detected by Western blots, and mRNA, detected by Northern blots, were both expressed in extrasynaptic as well as perisynaptic parts of the denervated muscle. Immunoreactivity on tissue sections was, however, found to be concentrated postsynaptically at neuromuscular junctions. Using β-catenin levels as a readout for canonical Wnt signaling no evidence for decreased canonical Wnt signaling was obtained in denervated muscle. A role for Sfrp1 in denervated muscle, other than interfering with canonical Wnt signaling, is discussed.  相似文献   

2.
Galectin-1 is a soluble carbohydrate-binding protein with a particularly high expression in skeletal muscle. Galectin-1 has been implicated in skeletal muscle development and in adult muscle regeneration, but also in the degeneration of neuronal processes and/or in peripheral nerve regeneration. Exogenously supplied oxidized galectin-1, which lacks carbohydrate-binding properties, has been shown to promote neurite outgrowth after sciatic nerve sectioning. In this study, we compared the expression of galectin-1 mRNA and immunoreactivity in innervated and denervated mouse and rat hind-limb and hemidiaphragm muscles. The results show that galectin-1 mRNA expression and immunoreactivity are up-regulated following denervation. The galectin-1 mRNA is expressed in the extrasynaptic and perisynaptic regions of the muscle, and its immunoreactivity can be detected in both regions by Western blot analysis. The results are compatible with a role for galectin-1 in facilitating reinnervation of denervated skeletal muscle.  相似文献   

3.
SHPS-1 (Src homology 2 domain containing protein tyrosine phosphatase substrate 1) is a transmembrane glycoprotein containing three immunoglobulin-like motifs in its extracellular domain and immunoreceptor tyrosine-based inhibitory motifs (ITIM) that interact with SHP-2 (Src homology 2 domain containing protein tyrosine phosphatase-2) in its cytoplasmic region. SHPS-1 is highly expressed in brain, but at much lower levels in skeletal muscle. In this study, we found that the level of the SHPS-1 mRNA increases in rat skeletal muscle after denervation. Western blot analysis also confirmed the increase of SHPS-1 in denervated muscle. Moreover, it was found that the glycosylation of SHPS-1 is N-linked in a muscle-specific manner, and that this is altered upon innervation or denervation. Immunohistochemistry revealed SHPS-1 immunoreactivity at neuromuscular junctions (NMJs) under innervation, whereas immunoreactivity was observed extrasynaptically in muscle fibers after denervation. Our results indicate that the expression, glycosylation, and localization of SHPS-1 are strongly regulated by the nervous system, and that SHPS-1 may play an important role in denervated skeletal muscle.  相似文献   

4.
5.
D Goldman  J Staple 《Neuron》1989,3(2):219-228
In adult vertebrate skeletal muscle acetylcholine receptors are localized to the neuromuscular junction. Upon denervation, this distribution changes, with new receptors appearing in extrajunctional regions of the muscle fiber. The location of acetylcholine receptors in innervated or denervated muscle may result, in part, from the distribution of their RNAs. This was tested by assaying for receptor RNAs in junctional and extrajunctional regions of innervated and denervated rat soleus muscle using in situ hybridization and RNAase protection assays. These experiments showed alpha, beta, and delta subunit RNAs concentrated beneath the endplates of innervated muscle fibers. Following denervation, there was an unequal distribution of receptor RNAs along the muscle fiber, with highest levels occurring in extrajunctional regions near the endplate. These data are consistent with a nonuniform pattern of gene expression in adult skeletal muscle fibers.  相似文献   

6.
7.
Xenopus oocytes were used to express polyadenylated messenger RNAs (mRNAs) encoding acetylcholine receptors and voltage-activated sodium channels from innervated and denervated skeletal muscles of cat and rat. Oocytes injected with mRNA from denervated muscle acquired high sensitivity to acetylcholine, whereas those injected with mRNA from innervated muscle showed virtually no response. Hence the amount of translationally active mRNA encoding acetylcholine receptors appears to be very low in normally innervated muscle, but increases greatly after denervation. Conversely, voltage-activated sodium currents induced by mRNA from innervated muscle were about three times larger than those from denervated muscle; this result suggests that innervated muscle contains more mRNA coding for sodium channels. The sodium current induced by mRNA from denervated muscle was relatively more resistant to block by tetrodotoxin. Thus a proportion of the sodium channels in denervated muscle may be encoded by mRNAs different from those encoding the normal channels.  相似文献   

8.
Neural factors regulate AChR subunit mRNAs at rat neuromuscular synapses   总被引:21,自引:6,他引:21  
To elucidate the nature of signals that control the level and spatial distribution of mRNAs encoding acetylcholine receptor (AChR), alpha-, beta-, gamma-, delta- and epsilon-subunits in muscle fibers chronic paralysis was induced in rat leg muscles either by surgical denervation or by different neurotoxins that cause disuse of the muscle or selectively block neuromuscular transmission pre- or postsynaptically and cause an increase of AChRs in muscle membrane. After paralysis, the levels and the spatial distributions of the different subunit-specific mRNAs change discoordinately and seem to follow one of three different patterns depending on the subunit mRNA examined. The level of epsilon-subunit mRNA and its accumulation at the end-plate are largely independent on the presence of the nerve or electrical muscle activity. In contrast, the gamma-subunit mRNA level is tightly coupled to innervation. It is undetectable or low in innervated normally active muscle and in innervated but disused muscle, whereas it is abundant along the whole fiber length in denervated muscle or in muscle in which the neuromuscular contact is intact but the release of transmitter is blocked. The alpha-, beta-, and delta-subunit mRNA levels show a different pattern. Highest amounts are always found at end-plate nuclei irrespective of whether the muscle is innervated, denervated, active, or inactive, whereas in extrasynaptic regions they are tightly controlled by innervation partially through electrical muscle activity. The changes in the levels and distribution of gamma- and epsilon-subunit-specific mRNAs in toxin-paralyzed muscle correlate well with the spatial appearance of functional fetal and adult AChR channel subtypes along the muscle fiber. The results suggest that the focal accumulation at the synaptic region of mRNAs encoding the alpha-, beta-, delta-, and epsilon-subunits, which constitute the adult type end-plate channel, is largely determined by at least two different neural factors that act on AChR subunit gene expression of subsynaptic nuclei.  相似文献   

9.

Background

p38 mitogen-activated protein kinase has been implicated in both skeletal muscle atrophy and hypertrophy. T317 phosphorylation of the p38 substrate mitogen-activated protein kinase-activated protein kinase 2 (MK2) correlates with muscle weight in atrophic and hypertrophic denervated muscle and may influence the nuclear and cytoplasmic distribution of p38 and/or MK2. The present study investigates expression and phosphorylation of p38, MK2 and related proteins in cytosolic and nuclear fractions from atrophic and hypertrophic 6-days denervated skeletal muscles compared to innervated controls.

Methods

Expression and phosphorylation of p38, MK2, Hsp25 (heat shock protein25rodent/27human, Hsp25/27) and Hsp70 protein expression were studied semi-quantitatively using Western blots with separated nuclear and cytosolic fractions from innervated and denervated hypertrophic hemidiaphragm and atrophic anterior tibial muscles. Unfractionated innervated and denervated atrophic pooled gastrocnemius and soleus muscles were also studied.

Results

No support was obtained for a differential nuclear/cytosolic localization of p38 or MK2 in denervated hypertrophic and atrophic muscle. The differential effect of denervation on T317 phosphorylation of MK2 in denervated hypertrophic and atrophic muscle was not reflected in p38 phosphorylation nor in the phosphorylation of the MK2 substrate Hsp25. Hsp25 phosphorylation increased 3-30-fold in all denervated muscles studied. The expression of Hsp70 increased 3-5-fold only in denervated hypertrophic muscles.

Conclusions

The study confirms a differential response of MK2 T317 phosphorylation in denervated hypertrophic and atrophic muscles and suggests that Hsp70 may be important for this. Increased Hsp25 phosphorylation in all denervated muscles studied indicates a role for factors other than MK2 in the regulation of this phosphorylation.
  相似文献   

10.
11.
In innervated skeletal muscle fibers, dystrophin and beta-dystroglycan form rib-like structures (costameres) that appear as predominantly transverse stripes over Z and M lines. Here, we show that the orientation of these stripes becomes longitudinal in denervated muscles and transverse again in denervated electrically stimulated muscles. Skeletal muscle fibers express nonneural (muscle) agrin whose function is not well understood. In this work, a single application of > or = 10 nM purified recombinant muscle agrin into denervated muscles preserved the transverse orientation of costameric proteins that is typical for innervated muscles, as did a single application of > or = 1 microM neural agrin. At lower concentration, neural agrin induced acetylcholine receptor aggregates, which colocalized with longitudinally oriented beta-dystroglycan, dystrophin, utrophin, syntrophin, rapsyn, and beta 2-laminin in denervated unstimulated fibers and with the same but transversely oriented proteins in innervated or denervated stimulated fibers. The results indicate that costameres are plastic structures whose organization depends on electrical muscle activity and/or muscle agrin.  相似文献   

12.
Tam  Siu Lin  Gordon  Tessa 《Brain Cell Biology》2003,32(5-8):961-974
This review considers the relative roles of sprouting stimuli, perisynaptic Schwann cells and neuromuscular activity in axonal sprouting at the neuromuscular junction in partially denervated muscles. A number of sprouting stimuli, including insulin-like growth factor II, which are generated from inactive muscle fibers in partially denervated and paralyzed skeletal muscles, has been considered. There is also evidence that perisynaptic Schwann cells induce and guide axonal sprouting in adult partially denervated muscles. Excessive neuromuscular activity significantly reduces bridging of perisynaptic Schwann cell processes between innervated and denervated endplates and thereby inhibits axonal sprouting in partially denervated adult muscles. Elimination of neuromuscular activity is also detrimental to sprouting in these muscles, suggesting that calcium influx into the nerve is crucial for axonal sprouting. The role of neuromuscular activity in axonal sprouting will be considered critically in the context of the roles of sprouting stimuli and perisynaptic Schwann cells in the process of axonal sprouting.  相似文献   

13.
Presenilin-1 and nicastrin, two components of gamma-secretase associated with Alzheimer's disease plaques, are present in the synapses of the brain and in various peripheral organs, including skeletal muscle. In the present study, we examined the expression pattern of presenilin-1 and nicastrin in normal and denervated hindlimb muscles of the rat. Using immunohistochemical approaches, we found that presenilin-1 and AChRalpha was co-localized at the neuromuscular junction in the normal skeletal muscles of rats. The immunoreactivities of both presenilin-1 and nicastrin were also observed at the sarcolemma of muscle fibers. We discovered that presenilin-1 mRNA and its protein are upregulated after denervation of the soleus and tibialis anterior muscles. Furthermore, clear co-localization between presenilin-1 and DAPI, but not nicastrin, was noted in several myonuclei in the denervated muscles. We recognized a few fibers possessing both ubiquitin and presenilin-1 protein in the cytosol. The amount of presenilin-1 in the nucleus and membrane fraction was more abundantly expressed in the denervated muscle fibers. In contrast, no significant difference in the nicastrin protein level was observed between normal and denervated muscle fibers. These data suggest that enhanced presenilin-1 protein may play a role in the degeneration and regeneration of skeletal muscle.  相似文献   

14.
15.
An orphan receptor of ligand-gated ion-channel type (L2, also termed ZAC according to the presence of zinc ion for channel activation) was identified by computer-assisted search programs on human genome database. The L2 protein shares partial homology with serotonin receptors 5HT3A and 5HT3B. We have cloned L2 cDNA derived from human caudate nucleus and characterized the exon-intron structure as follows: (1) The L2 protein has four transmembrane regions (M1-M4) and a long cytoplasmic loop between M3 and M4. (2) The sequence is conserved in species including chimpanzee, dog, cow, and opossum. (3) Nine exons form its protein-coding region and especially exon 5 corresponds to a disulfide bond region on the amino-terminal side. Our analysis using multiple tissue cDNA panels revealed that at least two splicing variants of L2 mRNA are present. The cDNA PCR amplification study revealed that L2 mRNA is expressed in tissues including brain, pancreas, liver, lung, heart, kidney, and skeletal muscle while 5HT3A mRNA could be detected in brain, heart, placenta, lung, kidney, pancreas, and skeletal muscle, and 5HT3B mRNA in brain, kidney, and skeletal muscle, suggesting different significance in tissue expression of these receptors. Regional expression of L2 mRNA and protein was examined in brain. The RT-PCR studies confirmed L2 mRNA expression in hippocampus, striatum, amygdala, and thalamus in adult brain. The L2 protein was immunolocalized by using antipeptide antibodies. Immunostained tissue sections revealed that L2-like immunoreactivity was dominantly expressed in the hippocampal CA3 pyramidal cells and in the polymorphic layer of the dentate gyrus. We analyzed the expression of L2 protein in HEK293 cells using GFP fusion protein reporter system. Western blots revealed that L2 protein confers sugar chains on the extracellular side. In transfected HEK293 cells, cellular membranes and intracellular puncta were densely labeled with GFP, suggesting selective dispatch to the final destination.  相似文献   

16.
The alpha subunit of a voltage-sensitive sodium channel characteristic of denervated rat skeletal muscle was cloned and characterized. The cDNA encodes a 2018 amino acid protein (SkM2) that is homologous to other recently cloned sodium channels, including a tetrodotoxin (TTX)-sensitive sodium channel from rat skeletal muscle (SkM1). The SkM2 protein is no more homologous to SkM1 than to the rat brain sodium channels and differs notably from SkM1 in having a longer cytoplasmic loop joining domains 1 and 2. Steady-state mRNA levels for SkM1 and SkM2 are regulated differently during development and following denervation: the SkM2 mRNA level is highest in early development, when TTX-insensitive channels predominate, but declines rapidly with age as SkM1 mRNA increases; SkM2 mRNA is not detectable in normally innervated adult skeletal muscle but increases greater than 100-fold after denervation; rat cardiac muscle has abundant SkM2 mRNA but no detectable SkM1 message. These findings suggest that SkM2 is a TTX-insensitive sodium channel expressed in both skeletal and cardiac muscle.  相似文献   

17.
Denervation of skeletal muscle alters the expression of many genes, which may be important for establishing optimal conditions for reinnervation. Using the differential display technique we have attempted to discover neurally regulated genes in skeletal muscle. An mRNA that is up-regulated in denervated hind limb muscle was identified and cloned. The cDNA encodes an RNA-binding protein, which was discovered during the course of this work to be a nucleolar protein interacting with the fork-head associated domain of the proliferation marker protein Ki-67, and named NIFK. We show that the nifk gene is widely expressed in adult mouse tissues and that the expression is up-regulated in denervated hind limb muscle. No difference between expression in perisynaptic and extrasynaptic portions of muscle was observed. The widespread expression in adult tissues suggests that the NIFK protein has other functions in addition to its interaction with Ki-67, which is only expressed in proliferating cells.  相似文献   

18.
It is known that denervation of rat skeletal muscle causes atrophy and this is often adopted as a model for human muscle atrophy. To understand the molecular changes that occur, it is important to identify the profiles of differential gene expression. In the present study, we investigated differentially expressed genes in denervated muscle using DNA microarrays with printed genes preferentially expressed in skeletal muscle. We found that several genes are differentially expressed. Of these genes, ARPP-16/19 (cAMP-regulated phosphoprotein 16/19) is selectively enhanced after denervation. The expression of ARPP-16/19 in denervated muscles starts to increase from two days after denervation surgery. On the other hand, the expression of ARPP-16/19 does not change in hind-limb suspended muscles, such as EDL and soleus muscles. These results suggest that the increase in ARPP-16/19 mRNA expression is regulated by unknown factor(s) secreted from nerves, and not by electrical muscle activity.  相似文献   

19.
The aim of this study was to determine the contribution of beta-adrenoceptor activation in the reconstruction of the structural and functional organization of denervated skeletal muscle. beta-agonists, clenbuterol (1.2 mg/kg body weight) and isoproterenol (2 mg/kg body weight), administration (daily oral administration; maximum 7 days) to normal innervated rats as well as denervated animals caused muscle hypertrophy. An increase in mean fiber diameter confirmed this stimulated growth both in normal innervated and denervated rat gastrocnemius muscle. Examination of muscle nuclei from treated but normal innervated rat gastrocnemius exhibited features like large size, active nucleoplasm and an increase in their number per fiber cross section and per mm mean fiber length indicating towards an elevated biosynthetic activity in tissue in the presence of beta adrenoceptor agonists. Administration of drugs to normal innervated animals resulted in an emergence of central muscle nuclei. The hyperactive and enlarged muscle nuclei ultimately organized themselves into unusually elongated nuclear streaks. beta agonist treatment to denervated rats resulted in amelioration of atrophic state of tissue characterized by hypertrophy of muscle fibers thus lending to a restoration of structural organization of tissue. Bizarre shapes of nuclei in denervated muscle tend to recover to that characteristic to normal innervated muscle in presence of clenbuterol and isoproterenol hydrochloride. All observations were confirmed by administering butoxamine, a beta-adrenoceptor antagonist along with beta-agonists. The results suggests that both clenbuterol and isoproterenol hydrochloride are capable of mimicking normal innervation functions in skeletal muscle and thus play important role in the structural and functional reorganization of tissue. Amelioration of denervation atrophy in rat gastrocnemius in the presence of beta-agonists supports this.  相似文献   

20.
The speed of contraction of a skeletal muscle largely depends on the myosin heavy chain isoforms (MyHC), whereas the relaxation is initiated and maintained by the sarcoplasmic reticulum Ca2+-ATPases (SERCA). The expression of the slow muscle-type myosin heavy chain I (MyHCI) is entirely dependent on innervation, but, as we show here, innervation is not required for the expression of the slow-type sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) in regenerating soleus muscles of the rat, although it can play a modulator role. Remarkably, the SERCA2a level is even higher in denervated than in innervated regenerating soleus muscles on day 7 when innervation is expected to resume. Later, the level of SERCA2a protein declines in denervated regenerated muscles but it remains expressed, whereas the corresponding mRNA level is still increasing. SERCA1 (i.e., the fast muscle-type isoform) expression shows only minor changes in denervated regenerating soleus muscles compared with innervated regenerating controls. When the soleus nerve was transected instead of the sciatic nerve, SERCA2a and MyHCI expressions were found to be even more uncoupled because the MyHCI nearly completely disappeared, whereas the SERCA2a mRNA and protein levels decreased much less. The transfection of regenerating muscles with constitutively active mutants of the Ras oncogene, known to mimic the effect of innervation on the expression of MyHCI, did not affect SERCA2a expression. These results demonstrate that the regulation of SERCA2a expression is clearly distinct from that of the slow myosin in the regenerating soleus muscle and that SERCA2a expression is modulated by neuronal activity but is not entirely dependent on it. slow type sarcoplasmic reticulum Ca2+ pump; MyHCI; nerve influence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号