共查询到20条相似文献,搜索用时 0 毫秒
1.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O173 has been investigated. Sugar and methylation analyses, electrospray ionisation mass spectrometry together with 1H, 31P and 13C NMR spectroscopy were the main methods used. The structure of the pentasaccharide repeating unit of the PS was found to be:
By treatment with 48% HF the phosphoric diester linkage was cleaved together with the glycosidic linkage of the fucosyl group, rendering a tetrasaccharide with the structure: 相似文献
2.
The structure of the O-antigen polysaccharide from Escherichia coli O78 has been investigated; methylation analysis, partial solvolysis with liquid hydrogen fluoride, and 2D-n.m.r. spectroscopy were the principal methods used. It is concluded that the polysaccharide is composed of tetrasaccharide repeating-units having the following structure.----3)-beta-D-GlcpNAc-(1----4)-beta-D-GlcpNAc- (1----4)-beta-D-Manp-(1----4)-alpha-D-Manp-(1---- 相似文献
3.
The structure of the O-antigen polysaccharide from Escherichia coli O164 has been determined. Nuclear magnetic resonance spectroscopy together with component and methylation analyses of lipid free polysaccharide were the principal methods used. The sequence of the sugar residues could be determined by NOESY and heteronuclear multiple bond connectivity NMR experiments. It is concluded that the polysaccharide is composed of a pentasaccharide repeating unit with the following structure: [structure: see text]. Matrix assisted laser desorption ionization mass spectrometry (MALDI-MS) was performed on intact lipopolysaccharide and from the resulting molecular mass, the O-antigen part was estimated to contain approximately 24 repeating units. The nature of the previously reported cross-reactivity of this O-antigen to those of Escherichia coli O124 and Shigella dysenteriae type 3 is discussed. 相似文献
4.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O152 has been determined. Component analysis together with 1H, 13C and 31P NMR spectroscopy were used to elucidate the structure. Inter-residue correlations were determined by 1H,31P COSY, 1H,1H NOESY and 1H,13C heteronuclear multiple-bond correlation experiments. The PS is composed of pentasaccharide repeating units with the following structure: [structure: see text]. The structure is similar to that of the O-antigen polysaccharide from E. coli O173. The cross-reactivity between E. coli O152 and E. coli O3 may be explained by structural similarities in the branching region of their O-antigen polysaccharides. 相似文献
5.
The structure of the O-antigen polysaccharide from Escherichia coli O-149 has been investigated; methylation analysis, partial hydrolysis with acid, and n.m.r. spectroscopy were the principal methods used. It is concluded that the polysaccharide is composed of trisaccharide repeating-units having the following structure. (Formula: see text). The absolute configuration at the acetalic carbon atom of the pyruvic acid residue is S. 相似文献
6.
Structural analysis of the O-antigen polysaccharide from the Shiga toxin-producing Escherichia coli O172. 总被引:3,自引:0,他引:3
The structure of the O-antigen polysaccharide from Escherichia coli O172 has been determined. In combination with sugar analysis, NMR spectroscopy shows that the polysaccharide is composed of pentasaccharide repeating units. Sequential information was obtained by mass spectrometry and two-dimensional NMR techniques. An O-acetyl group was present as 0.7 equivalent per repeating unit. Treatment of the O-deacetylated polysaccharide with aqueous 48% hydrofluoric acid rendered cleavage of the phosphodiester in the backbone of the polymer and the pentasaccharide isolated after gel permeation chromatography was structurally characterized. Subsequent NMR experiments on polymeric materials revealed the structure of the repeating unit of the O-polysaccharide from E. coli O172 as:-->P-4)-alpha-D-Glcp-(1-->3)-alpha-L-FucpNAc-(1-->3)-alpha-D- GlcpNAc-(1-->3)-alpha-L-FucpNAc-(1-->4)-alpha-D-Glcp6Ac-(1--> 相似文献
7.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O177 has been determined. Component analysis together with 1H and 13C NMR spectroscopy experiments was used to determine the structure. Inter-residue correlations were determined by 1H,13C-heteronuclear multiple-bond correlation and 1H,1H-NOESY experiments. PS is composed of tetrasaccharide repeating units with the following structure:→2)-α-l-Rhap-(1→3)-α-l-FucpNAc-(1→3)-α-l-FucpNAc-(1→3)-β-d-GlcpNAc-(1→An α-l-Rhap residue is suggested to be present at the terminal part of the polysaccharide, which on average is composed of ∼20 repeating units, since the 1H and 13C chemical shifts of an α-linked rhamnopyranosyl group could be assigned by a combination of 2D NMR spectra. Consequently, the biological repeating unit has a 3-substituted N-acetyl-d-glucosamine residue at its reducing end. The repeating unit of the E. coli O177 O-antigen shares the →3)-α-l-FucpNAc-(1→3)-β-d-GlcpNAc-(1→ structural element with the O-antigen from E. coli O15 and this identity may then explain the reported cross-reactivity between the strains. 相似文献
8.
Structural studies of the Escherichia coli O-antigen 6 总被引:1,自引:0,他引:1
Per-Erik Jansson Bengt Lindberg Jörgen Lönngren Carmen Ortega Stefan B. Svenson 《Carbohydrate research》1984,131(2):277-283
The structure of the Escherichia coli O-antigen 6 has been investigated using n.m.r. spectroscopy, methylation analysis, and various specific degradations. It is concluded that the O-antigen is composed of pentasaccharide repeating-units having the following structure. (Formula: see text) 相似文献
9.
Structural studies of the Escherichia coli O-antigen 25 总被引:1,自引:0,他引:1
The structure of the Escherichia coli O-antigen 25 has been investigated using n.m.r. spectroscopy, methylation analysis, and various specific degradations. It is concluded that the O-antigen is composed of pentasaccharide repeating-units having the following structure. 相似文献
10.
The structure of the O-antigen polysaccharide of the lipopolysaccharide from the enteroinvasive Escherichia coli O136 has been elucidated. The composition of the repeating unit was established by sugar and methylation analysis together with 1H and 13C NMR spectroscopy. Two-dimensional nuclear Overhauser effect spectroscopy (NOESY) and heteronuclear multiple-bond correlation experiments were used to deduce the sequence. The absolute configuration for the nonulosonic acid (NonA) could be determined using spin-spin coupling constants, 13C chemical shifts and NOESY. The anomeric configuration of the NonA was determined via vicinal and geminal 13C,1H coupling constants. The structure of the repeating unit of the polysaccharide from E. coli O136 is as follows, in which beta-NonpA is 5,7-diacetamido-3,5,7, 9-tetradeoxy-Lglycero-beta-Lmanno-nonulosonic acid: -->4)-beta-NonpA-(2-->4)-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1--> 相似文献
11.
Structural studies of the O-antigen polysaccharides of Klebsiella O5 and Escherichia coli O8 总被引:5,自引:0,他引:5
Per-Erik Jansson Jörgen Lönngren Göran Widmalm Karin Leontein Kerstin Slettengren Stefan B. Svenson Göran Wrangsell Anne Dell Philip R. Tiller 《Carbohydrate research》1985,145(1):59-66
The O-antigen polysaccharides of Klebsiella serotype O5 and Escherichia coli serotype O8 are serologically very similar or identical. The structures of these two polysaccharides have now been re-investigated. N.m.r. spectroscopy, chromium trioxide oxidation, hydrolysis with a specific phage enzyme, and f.a.b. mass spectrometry were the principal methods used. It is concluded that the O-antigen has the following structure, in which D-Man3Me is 3-O-methyl-D-mannose and n is approximately 10. (Formula: see text) Biosynthetic studies indicate that these antigens are synthesised by addition of D-mannopyranosyl groups to the "non-reducing" end of the mannan chain, and it seems possible that addition of a 3-O-methyl-D-mannopyranosyl group involves termination. 相似文献
12.
The structure of the O-antigen polysaccharide from Escherichia coli O159 has been determined using primarily NMR spectroscopy of the 13C-enriched polysaccharide. The sequence of the sugar residues could be determined by heteronuclear multiple bond connectivity NMR experiments. The polysaccharide is composed of a pentasaccharide repeating unit with the following structure: [sequence: see text] Matrix assisted laser desorption ionization mass spectrometry was performed on intact lipopolysaccharide and from the resulting molecular mass the O-antigen part was estimated to contain approximately 23 repeating units. Cross-reactivity of this O-antigen to that of Shigella dysenteriae type 4 was confirmed using enzyme-linked immunoabsorbant assay. 相似文献
13.
The O-antigen of the lipopolysaccharide from Escherichia coli O166 has been determined by component analysis together with 1D and 2D NMR spectroscopy techniques. The polysaccharide has pentasaccharide repeating units consisting of D-glucose (1), D-galactose (2) and N-acetyl-D-galactosamine (2) with the following structure: [STRUCTURE: SEE TEXT]. In the 1H NMR, spectrum resonances of low intensity were observed. Further analysis of these showed that they originate from the terminal part of the polysaccharide, thereby revealing that the repeating unit has a 3-substituted N-acetyl-D-galactosamine residue at its reducing end. 相似文献
14.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O175 has been elucidated. Component analysis together with 1H and 13C NMR spectroscopy experiments were used to determine the structure. Inter-residue correlations were determined by 1H,1H-NOESY, and 1H,13C-heteronuclear multiple-bond correlation experiments. The PS is composed of pentasaccharide repeating units with the following structure:→2)-α-d-Glcp-(1→4)-α-d-GlcpA-(1→3)-α-d-Manp-(1→2)-α-d-Manp-(1→3)-β-d-GalpNAc-(1→Cross-peaks of low intensity from an α-linked glucopyranosyl residue were present in the 1H,1H-TOCSY NMR spectra. The α-d-Glcp residue is suggested to originate from the terminal part of the polysaccharide and consequently the biological repeating unit has a 3-substituted N-acetyl-d-galactosamine residue at its reducing end. The repeating unit of the E. coli O175 O-antigen is similar to those from E. coli O22 and O83, both of which carry an α-d-Glcp-(1→4)-d-GlcpA structural element, thereby explaining the reported cross-reactivities between the strains. 相似文献
15.
T A Chowdhury P E Jansson B Lindberg J Lindberg B Gustafsson T Holme 《Carbohydrate research》1991,215(2):303-314
The structure of the Vibrio cholerae O:3 O-antigen polysaccharide has been investigated, mainly by n.m.r. spectroscopy, mass spectrometry, sugar and methylation analysis, and specific degradations, and is proposed to involve the following tetrasaccharide repeating-unit. [formula: see text]. In this structure, D-D-Hep is D-glycero-D-manno-heptose, Asc is 3,6-dideoxy-L-arabino-hexose (ascarylose), and Sug is 2,4-diamino-2,4,6-trideoxy-D-glucose (bacillosamine) in which N-2 is acetylated and N-4 is acylated with a 3,5-dihydroxyhexanoic acid. That the 2,4-diamino-2,4,6-trideoxy-D-glucose residue is linked through O-3 and not through one of the hydroxyl groups in the 3,5-dihydroxyhexanoyl group is indicated but not definitely proved. The configuration of the latter group has not been determined. The f.a.b.-mass spectrum of the methylated O-antigen indicates that the structure given above also represents the biological repeating-unit. 相似文献
16.
Chemical and immunochemical studies of the O-antigen from enteropathogenic Escherichia coli O158 lipopolysaccharide 总被引:1,自引:0,他引:1
The O-specific polysaccharide isolated from Escherichia coli O158 smooth lipopolysaccharide contains L-rhamnose, D-glucose and 2-acetamido-2-deoxy-D-galactose in the molar ratios 1:2:2. Studies on composition, methylation analysis and specific degradations together with a 1H and 13C NMR spectral study established that the O-antigen is built up from a pentasaccharide repeating unit having the following structure: [formula: see text] The most effective inhibitory part of the oligosaccharide from E. coli O158 lipopolysaccharide has been serologically characterized by an ELISA-inhibition study using different sugars. The results showed that methyl alpha- and beta-D-GalpNAc are the most effective inhibitors among the monosaccharides tested, while the main antibody specificity lies on the main-chain trisaccharide repeating unit. 相似文献
17.
Per-Erik Jansson Bengt Lindberg Modupe Ogunlesi Stefan B. Svenson Göran Wrangsell 《Carbohydrate research》1984,134(2):283-291
The structure of the O-antigen polysaccharide of Escherichia coli O4 has been investigated using n.m.r. spectroscopy, methylation analysis, and various specific degradations. It is concluded that the O-antigen is composed of pentasaccharide repeating-units having the following structure. This structure differs in some details from that recently proposed by Schmidt et al. 相似文献
18.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O176 has been determined. Component analysis together with 1H and 13C NMR spectroscopy was employed to elucidate the structure. Inter-residue correlations were determined by 1H, 1H NOESY and 1H, 13C heteronuclear multiple-bond correlation experiments. The PS is composed of tetrasaccharide repeating units with the following structure: [Formula: see text] Cross-peaks of low intensity from alpha-linked mannopyranosyl residues were present in the 1H, 1H TOCSY NMR spectra and further analysis of these showed that they originate from the terminal part of the polysaccharide. Consequently, the biological repeating unit has a 3-substituted N-acetyl-d-galactosamine residue at its reducing end. The repeating unit of the E. coli O176 O-antigen is similar to those from E. coli O17 and O77, thereby explaining the reported cross-reactivities between the strains, and identical to that of Salmonella cerro (O:6, 14, 18). 相似文献
19.
The structure of the O-antigenic part of the lipopolysaccharide (LPS) obtained from the verotoxin-producing Escherichia coli O171 has been determined. (1)H and (13)C NMR spectroscopy techniques in combination with component analysis were used to elucidate the O-antigen structure of O-deacylated LPS. Subsequent NMR analysis of the native LPS revealed acetylation at O-7/O-9 of the sialic acid residue. The sequence of sugars was determined by inter-residue correlations in (1)H,(1)H-NOESY and (1)H,(13)C-heteronuclear multiple-bond correlation spectra. The O-antigen is composed of pentasaccharide repeating units with one equivalent of O-acetyl groups distributed over two positions: -->4)-alpha-Neu5Ac7,9Ac-(2-->6)-beta-D-Galp-(1-->6)-beta-DGlcp-->(1-->3)-beta-D-Galp-(1-->3)-beta-D-GalpNAc-(1--> Based on biosynthetic considerations, this should also be the biological repeating unit. 相似文献
20.
Conformational studies have been performed of a pentasaccharide derived from the O-polysaccharide from Escherichia coli O142. The polymer was selectively degraded by anhydrous hydrogen fluoride and reduced to yield an oligosaccharide model of its repeating unit, which in the branching region consists of four aminosugars. A comparison of (1)H and (13)C chemical shifts between the pentasaccharide and the polymer showed only minor differences, except where the cleavage had taken place, indicating that the oligomer is a good model of the repeating unit. Langevin dynamics and molecular dynamics simulations with explicit water molecules were carried out to sample the conformational space of the pentasaccharide. For the glycosidic linkages between the hexopyranoside residues, small but significant changes were observed between the simulation techniques. One-dimensional (1D) (1)H,(1)H double pulsed field gradient spin echo (DPFGSE) transverse rotating-frame Overhauser effect spectroscopy (T-ROESY) experiments were performed, and homonuclear cross-relaxation rates were obtained. Subsequently, a comparison of interproton distances from NMR experiment and the two simulation approaches showed that in all cases the use of explicit water in the simulations resulted in better agreement. Hydrogen-bond analysis of the trajectories from the molecular dynamics simulation revealed interresidue interactions to be important as a cluster of different hydrogen bonds and as a distinct highly populated hydrogen bond. NMR data are consistent with the presence of hydrogen bonding within the model of the repeating unit. 相似文献