首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasmid DNA scission by the restriction enzyme HaeIII was investigated in the presence of tetrakis(1-methylpyridinium-4-yl)porphyrin (H2TMPyP) and its manganese(III), iron(III), nickel(II), cobalt(III) and zinc(II) derivatives. The effect of metalloporphyrins on plasmid DNA cleavage was ascertained by gel electrophoresis. UV-Vis absorption spectroscopy and circular dichroism (CD) spectroscopy. In the absence of the metalloporphyrins, plasmid DNA scission did not occur in the presence of a low concentration of HaeIII (0.2 units microL(-1)) at 37 degrees C after 1 h incubation. However, DNA cleavage occurred in the presence of the metalloporphyrins and HaeIII (0.2 units microL(-1)) at 37 degrees C after 1 h incubation. Gel electrophoresis results indicate the catalytic effect of metalloporphyrins (Mn(III)-, Fe(III)-, Co(III)- and Zn(II)TMPyP) by binding to both DNA and the enzyme through electrostatic interaction, which was confirmed by the change in UV-Vis and CD spectra. A mechanism for the enhanced DNA cleavage is proposed.  相似文献   

2.
Clerocidin (CL), a microbial diterpenoid, reacts with DNA via its epoxide group and stimulates DNA cleavage by type II DNA topoisomerases. The molecular basis of CL action is poorly understood. We establish by genetic means that CL targets DNA gyrase in the Gram-positive bacterium Streptococcus pneumoniae, and promotes gyrase-dependent single- and double-stranded DNA cleavage in vitro. CL-stimulated DNA breakage exhibited a strong preference for guanine preceding the scission site (−1 position). Mutagenesis of −1 guanines to A, C or T abrogated CL cleavage at a strong pBR322 site. Surprisingly, for double-strand breaks, scission on one strand consistently involved a modified (piperidine-labile) guanine and was not reversed by heat, salt or EDTA, whereas complementary strand scission occurred at a piperidine-stable −1 nt and was reversed by EDTA. CL did not induce cleavage by a mutant gyrase (GyrA G79A) identified here in CL-resistant pneumococci. Indeed, mutations at G79 and at the neighbouring S81 residue in the GyrA breakage-reunion domain discriminated poisoning by CL from that of antibacterial quinolones. The results suggest a novel mechanism of enzyme inhibition in which the −1 nt at the gyrase-DNA gate exhibit different CL reactivities to produce both irreversible and reversible DNA damage.  相似文献   

3.
DNA strand scission by activated bleomycin group antibiotics   总被引:1,自引:0,他引:1  
The bleomycins (BLMs) are a structurally related group of antitumor antibiotics used clinically for the treatment of certain malignancies. The mechanism of action of the BLM is believed to involve DNA strand scission, a process that requires O2 and an appropriate metal ion; the therapeutically relevant metal is probably iron or copper. DNA strand scission by activated Fe X BLM involves oxygenation C-4' of deoxyribose and leads to two sets of products. One set results from scission of the C-3'--C-4' bond of deoxyribose, with concomitant cleavage of the DNA chain. The other set of products consists of free bases and an alkali-labile lesion, the latter of which leads to DNA chain cleavage on subsequent treatment with base. The structures of all of these degradation products have now been established by direct comparison with authentic synthetic samples. Also studied was the activation of BLM with (mono)oxygen surrogates such as iodosobenzene. The chemistry of the activated BLM so formed was remarkably similar to that of activated cytochrome P-450 and structurally related metalloporphyrins, which suggests a mechanistic analogy between the two. Remarkably, both Fe X BLM and Cu X BLM were also shown to be activated by NADPH cytochrome P-450 reductase in a transformation that was dependent on metal ion, O2 and NADPH.  相似文献   

4.
Topoisomerase (topo) IV and gyrase are bacterial type IIA DNA topoisomerases essential for DNA replication and chromosome segregation that act via a transient double-stranded DNA break involving a covalent enzyme-DNA "cleavage complex." Despite their mechanistic importance, the DNA breakage determinants are not understood for any bacterial type II enzyme. We investigated DNA cleavage by Streptococcus pneumoniae topo IV and gyrase stabilized by gemifloxacin and other antipneumococcal fluoroquinolones. Topo IV and gyrase induce distinct but overlapping repertoires of double-strand DNA breakage sites that were essentially identical for seven different quinolones and were augmented (in intensity) by positive or negative supercoiling. Sequence analysis of 180 topo IV and 126 gyrase sites promoted by gemifloxacin on pneumococcal DNA revealed the respective consensus sequences: G(G/c)(A/t)A*GNNCt(T/a)N(C/a) and GN4G(G/c)(A/c)G*GNNCtTN(C/a) (preferred bases are underlined; disfavored bases are in small capitals; N indicates no preference; and asterisk indicates DNA scission between -1 and +1 positions). Both enzymes show strong preferences for bases clustered symmetrically around the DNA scission site, i.e. +1G/+4C, -4G/+8C, and particularly the novel -2A/+6T, but with no preference at +2/+3 within the staggered 4-bp overhang. Asymmetric elements include -3G and several unfavored bases. These cleavage preferences, the first for Gram-positive type IIA topoisomerases, differ markedly from those reported for Escherichia coli topo IV (consensus (A/G)*T/A) and gyrase, which are based on fewer sites. However, both pneumococcal enzymes cleaved an E. coli gyrase site suggesting overlap in gyrase determinants. We propose a model for the cleavage complex of topo IV/gyrase that accommodates the unique -2A/+6T and other preferences.  相似文献   

5.
J S Vyle  B A Connolly  D Kemp  R Cosstick 《Biochemistry》1992,31(11):3012-3018
Oligonucleotides containing a 3'-thiothymidine residue (T3's) at the cleavage site for the EcoRV restriction endonuclease (between the central T and A residues of the sequence GATATC) have been prepared on an automated DNA synthesizer using 5'-O-monomethoxytritylthymidine 3'-S-(2-cyanoethyl N,N-diisopropylphosphorothioamidite). The self-complementary sequence GACGAT3'sATCGTC was completely resistant to cleavage by EcoRV, while the heteroduplex composed of 5'-TCTGAT3'sATCCTC and 5'-GAGGATATCAGA (duplex 4) was cleaved only in the unmodified strand (5'-GAGGATATCAGA). In contrast, strands containing a 3'-S-phosphorothiolate linkage could be chemically cleaved specifically at this site with Ag+. A T3's residue has also been incorporated in the (-) strand of double-stranded closed circular (RF IV) M13mp18 DNA at the cleavage site of a unique EcoRV recognition sequence by using 5'-pCGAGCTCGAT3'sATCGTAAT as a primer for polymerization on the template (+) strand of M13mp18 DNA. On treatment of this substrate with EcoRV, only one strand was cleaved to produce the RF II or nicked DNA. Taken in conjunction with the cleavage studies on the oligonucleotides, this result demonstrates that the 3'-S-phosphorothiolate linkage is resistant to scission by EcoRV. Additionally, the phosphorothiolate-containing strand of the M13mp18 DNA could be cleaved specifically at the point of modification using iodine in aqueous pyridine. The combination of enzymatic and chemical techniques provides, for the first time, a demonstrated method for the sequence-specific cleavage of either the (+) or (-) strand.  相似文献   

6.
In combination with copper(II) ion and 365 nm-light, anti-tumor alkaloid camptothecin produced remarkable DNA strand scission. The DNA sequencing analysis revealed considerably random nucleotide sequence cleavage. The present DNA breakage reaction was strongly inhibited by catalase and bathocuproine, but not by superoxide dismutase, mannitol, and 1,4-diazabicyclo-[2.2.2]octane. The camptothecin-Cu(II)-UV light system also clearly induced bacteriophage-inactivation which is associated with the DNA degradation. On the basis of the experimental results, the reaction mechanism for the present DNA cleavage has been discussed.  相似文献   

7.
Heat-induced DNA cleavage by esperamicin antitumor antibiotics   总被引:1,自引:0,他引:1  
Y Uesawa  Y Sugiura 《Biochemistry》1991,30(38):9242-9246
Esperamicin A1 effectively breaks DNA strands upon heating at 50 degrees C. The preferential DNA cutting sites of heat-activated esperamicin A1 are random and clearly differ from those of thiol- or UV-light-mediated DNA breakage with esperamicin A1. The absence of heat-induced DNA cleavage by esperamicin Z and the induction of the DNA breakage by esperamicin A1 disulfide indicate that (1) the enediyne core plays a significant role in this DNA strand scission and (2) the DNA cutting with the heat-activated esperamicin antibiotics does not necessarily require a trisulfide trigger in the aglycon portion. On the basis of the present results, a probable mechanism for the heat-induced DNA cleavage of esperamicin A1 has been proposed.  相似文献   

8.
A series of metalloporphyrins linked through basic chains to certain DNA interactive groups has been synthesized. Several of these agents reproduce the characteristic properties of the antitumor glycopeptide bleomycin, including the oxygen-mediated scission of DNA in the presence of thiols, antibiobic activity under aerobic conditions, and activity against human and animal tumor models. Initial screening by scission of PM2-CCC-DNA identified six of the compounds, including those bearing acridine and acodazole intercalating groups, as the most active. The specificity of the oxygen-mediated scission of a 139 base pair HindIII/NciI restriction fragment of pBR322 by these six selected agents was then determined and compared with the action of pancreatic DNase by densitometric scans. All six of these compounds produce uniform base and sequence neutral cleavage of the restriction fragment at each base site. The six active compounds bear either of two types of intercalators, 6-chloro-2-methoxyacridine or acodazole, and with linkages to the ferric binding domain of -NH(CH2)2-, -NH(CH2)3-, -NH(CH2)4-, or -NH(CH2)3NH(CH2)3- and either porphyrin or deuteroporphyrin moieties. Comparison of the Kassoc values for binding to calf thymus DNA suggests that the enhanced binding observed with the linker -NH(CH2)3NH(CH2)3- contributes to the efficiency of sequence neutral DNA scission and may be a factor in the relative anticancer activities of these agents. The iron porphyrins give no evidence of the production of base propenals in DNA degradation, and the autoradiograms clearly indicate that a phosphate group is attached to the 5' end of the oligomer. The scission is partially suppressible by catalase and superoxide dismutase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The DNA strand scission activities of three positional isomers of Fe(III) meso-tetra(N-methylpyridyl)porphine (Fe(III)TnMPyP, where n = 2, 3 or 4) have been investigated using PM2 DNA as a substrate. A significant degree of strand scission activity was noted in the presence of oxygen without the addition of a reducing agent. This activity was probably due to the presence of reducing agents in the agarose gels used to separate the DNA forms, as higher levels were recorded with reducing agents added to the strand scission mixture. The relative order of strand scission activity in the absence of added reducing agents was found to be Fe(III)T2MPyP greater than Fe(III)T4MPyP greater than Fe(III)T3MPyP. Comparative studies were also made with Fe(II)bleomycin. High concentrations of some reducing agents inhibited strand scission. Oxygen was required to produce optimal strand scission activity for all three porphyrins. It was also noted from spectroscopic measurements that the reduced porphyrins were degraded in the presence of oxygen. Studies with a series of potential strand scission inhibitors suggest that hydrogen peroxide and possibly peroxy radicals are intermediates in the reaction mechanism, while diffusible hydroxyl radicals appear to be excluded. However, superoxide radicals cannot be ruled out.  相似文献   

10.
The anticancer drug, bleomycin, causes both single and double strand scission of duplex DNA in vitro, with double strand scission occurring in excess of that expected from the random accumulation of single strand nicks. The mechanism of the preferential double strand scission of DNA by bleomycin has been investigated through the synthesis of a series of double hairpin and linear oligonucleotides designed to contain a single nick-like structure at a defined site to serve as models of bleomycin-damaged duplex DNA. The 3' and/or 5' hydroxyls flanking the nick have been phosphorylated to model the increased negative charge at a bleomycin-generated nick. The ability of bleomycin to cleave the intact strand opposite the nick was then determined by autoradiography. The results demonstrate that phosphorylation at either the 3' or 5' hydroxyl, and especially when both sites are phosphorylated, strongly enhances selective cleavage by bleomycin of the opposite strand. These experiments indicate that bleomycin-mediated double strand scission is a form of self-potentiation in which the high affinity of bleomycin for the initially generated nicked sites leads to a greatly enhanced probability of scission of the strand opposite those sites.  相似文献   

11.
Chworos  A.  Arnaud  P.  Zakrzewska  K.  Guga  P.  Pratviel  G.  Stec  W.  Meunier  B. 《Journal of biological inorganic chemistry》2004,9(3):374-384
A manganese porphyrin complex, Mn-TMPyP, associated with KHSO5 is a chemical nuclease able to selectively recognize the minor groove of three consecutive AT base pairs of DNA and to mediate very precise cleavage chemistry at that particular site. This specific recognition and cleavage were used to probe the accessibility of the minor groove of DNA duplexes composed of one phosphodiester strand and one phosphorothioate strand. The cleavage of 5-GCAAAAGC/5-GCTTTTGC duplexes by Mn-TMPyP/KHSO5 was monitored by HPLC coupled to electrospray mass analysis. Each single strand was synthesized with all-phosphate, all-Rp-phosphorothioate and all-Sp-phosphorothioate internucleotide bonds. We found that the manganese porphyrin was able to recognize its favorite (AT)3-box binding site within the heteroduplexes, as in the case of natural DNA. Molecular modeling studies on the interactions of the reactive porphyrin manganese-oxo species with both types of duplexes confirmed the experimental data.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

12.
Abasic sites are the most commonly formed DNA lesions in the cell and are produced by numerous endogenous and environmental insults. In addition, they are generated by the initial step of base excision repair (BER). When located within a topoisomerase II DNA cleavage site, "intact" abasic sites act as topoisomerase II poisons and dramatically stimulate enzyme-mediated DNA scission. However, most abasic sites in cells are not intact. They exist as processed BER intermediates that contain DNA strand breaks proximal to the damaged residue. When strand breaks are located within a topoisomerase II DNA cleavage site, they create suicide substrates that are not religated readily by the enzyme and can generate permanent double-stranded DNA breaks. Consequently, the effects of processed abasic sites on DNA cleavage by human topoisomerase IIalpha were examined. Unlike substrates with intact abasic sites, model BER intermediates containing 5'- or 3'-nicked abasic sites or deoxyribosephosphate flaps were suicide substrates. Furthermore, abasic sites flanked by 5'- or 3'-nicks were potent topoisomerase II poisons, enhancing DNA scission approximately 10-fold compared with corresponding nicked oligonucleotides that lacked abasic sites. These findings suggest that topoisomerase II is able to convert processed BER intermediates to permanent double-stranded DNA breaks.  相似文献   

13.
The short-chain lipid hydroperoxide analogue tert-butylhydroperoxide induces peroxynitrite-dependent and -independent DNA single strand breakage in PC12 cells. U937 cells that do not express constitutive nitric oxide synthase respond to tert-butylhydroperoxide treatment with peroxynitrite-independent DNA cleavage. Under experimental conditions leading to equivalent strand break frequencies, the analysis of poly(ADP-ribose) polymerase activity showed an increase in PC12 cells but not in U937 cells. The enhanced poly(ADP-ribose) polymerase activity observed in PC12 cells was paralleled by a significant decline in NAD+ content and both events were prevented by treatments suppressing formation of peroxynitrite. Although DNA breaks were rejoined at similar rates in the two cell lines, an inhibitor of poly(ADP-ribose) polymerase delayed DNA repair in PC12 cells but had hardly any effect in U937 cells. The results obtained using the latter cell type were confirmed with an additional cell line (Chinese hamster ovary cells) that does not express nitric oxide synthase. Collectively, our data suggest that tert-butylhydroperoxide-induced peroxynitrite-independent DNA strand scission is far less effective than the DNA cleavage generated by endogenous peroxynitrite in stimulating the activity of poly(ADP-ribose) polymerase.  相似文献   

14.
D W Celander  T R Cech 《Biochemistry》1990,29(6):1355-1361
Fe(II)-EDTA catalyzes the cleavage of nucleic acids with little or no base-sequence specificity. We have now studied the preference of this reagent in catalyzing the cleavage of single- versus double-stranded nucleic acid structures. Three RNA and two DNA molecules, each expected to contain both single- and double-stranded regions, were synthesized and their structures characterized by enzymatic digestion using secondary structure specific nucleases. Fe(II)-EDTA catalyzed nearly uniform strand scission along the entire length of each molecule; no correlation with secondary structure was observed. The homopolymer sequence dA30:dT30, embedded in a mixed-sequence context to promote exact register of the homopolymer tract, was cleaved to an extent similar to that of flanking sequences. The reactions were relatively insensitive to K+, Na+, and Mg2+ in the range 10-100 mM and were quenched by Tris-HCl buffer. We conclude that the Fe(II)-EDTA-catalyzed strand scission reaction does not discriminate between typical single- and double-stranded regions, which simplifies the interpretation of experiments in which the reaction is used to probe the tertiary structure of RNA molecules [Latham, J. A., & Cech, T. R. (1989) Science 245, 276-282].  相似文献   

15.
Macromomycin, an antitumor protein, produces strand scission of DNA in KB cells, which might appear to correlate with its concommitant inhibition of thymidine and uridine incorporation into nucleic acids. However, an acetyl derivative of macromomycin does not cause the same extent of strand breakage, yet it shows inhibitory and cytotoxic properties similar to the native protein. This is also seen in a derivative of macromomycin resulting from its reaction with the Bolton-Hunter reagent. Cesalin, another antitumor protein, does not possess DNA cleavage activity.  相似文献   

16.
Vaccinia DNA topoisomerase IB (TopIB) relaxes supercoils by forming and resealing a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate. Here we gained new insights to the TopIB mechanism through "chemical mutagenesis." Meta-substituted analogs of Tyr(274) were introduced by in vitro translation in the presence of a chemically misacylated tRNA. We report that a meta-OH reduced the rate of DNA cleavage 130-fold without affecting the rate of religation. By contrast, meta-OCH(3) and NO(2) groups elicited only a 6-fold decrement in cleavage rate. We propose that the meta-OH uniquely suppresses deprotonation of the para-OH nucleophile during the cleavage step. Assembly of the vaccinia TopIB active site is triggered by protein contacts with a specific DNA sequence 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p downward arrowN (where downward arrow denotes the cleavage site). A signature alpha-helix of the poxvirus TopIB ((132)GKMKYLKENETVG(144)) engages the target site in the major groove and thereby recruits catalytic residue Arg(130) to the active site. The effects of 11 missense mutations at Tyr(136) highlight the importance of van der Waals interactions with the 3'-G(+4)pG(+3)p dinucleotide of the nonscissile strand for DNA cleavage and supercoil relaxation. Asn(140) and Thr(142) donate hydrogen bonds to the pro-(S(p))-oxygen of the G(+3)pA(+2) phosphodiester of the nonscissile strand. Lys(133) and Lys(135) interact with purine nucleobases in the major groove. Whereas none of these side chains is essential per se, an N140A/T142A double mutation reduces the rate of supercoil relaxation and DNA cleavage by 120- and 30-fold, respectively, and a K133A/K135A double mutation slows relaxation and cleavage by 120- and 35-fold, respectively. These results underscore functional redundancy at the TopIB-DNA interface.  相似文献   

17.
We have designed and synthesized a series of novel DNA photocleaving agents which break DNA with high sequence specificity. These compounds contain the non-diffusible photoactive p-nitrobenzoyl group covalently linked via a dimethylene (or tetramethylene) spacer to thiazole analogues of the DNA binding portion of the antibiotic bleomycin A2. By using a variety of 5' or 3' 32P-end labeled restriction fragments from plasmid pBR322 as substrate, we have shown that photoactive bithiazole compounds bind DNA at the consensus sequence 5'-AAAT-3' and induce DNA cleavage 3' of the site. Analysis of cleavage sites on the complementary DNA strand and inhibition of DNA breakage by distamycin A indicates these bithiazole derivatives bind and attack the minor groove of DNA. A photoactive unithiazole compound was less specific inducing DNA breakage at the degenerate site 5'-(A/T)(AA/TT)TPu(A/T)-3'. DNA sequence recognition of these derivatives appears to be determined by the thiazole moiety rather than the p-nitrobenzoyl group: use of a tetramethylene group in place of a dimethylene spacer shifted the position of DNA breakage by one base pair. Moreover, much less specific DNA photocleavage was observed for a compound in which p-nitrobenzoyl was linked to the intercalator acridine via a sequence-neutral hexamethylene spacer. The 5'-AAAT-3' specificity of photoactive bithiazole derivatives contrasts with that of bleomycin A2 which cleaves DNA most frequently at 5'-GPy-3' sequences. These results suggest that the cleavage specificity exhibited by bleomycin is not simply determined by its bithiazole/sulphonium terminus, and the contributions from other features, e.g. its metal-chelating domain, must be considered. The novel thiazole-based DNA cleavage agents described here should prove useful as reagents for probing DNA structure and for elucidating the molecular basis of DNA recognition by bleomycin and other ligands.  相似文献   

18.
Degradation of structurally modified DNAs by bleomycin group antibiotics   总被引:1,自引:0,他引:1  
Bleomycin-mediated DNA strand scission has been shown to be diminished at certain sequences in proximity to 5-methylcytidines. We have investigated the molecular basis of this observed diminution using selective bleomycin (BLM) modifications at the C-terminus. Of the four different bleomycin congeners investigated, only bleomycin A2 and bleomycin BAPP were substantially affected by cytidine methylation. We have also examined the effect of other DNA modifications on bleomycin-mediated strand scission. Methylation at the N6 position of adenosine resulted in diminution of DNA cleavage by all four bleomycin congeners. The presence of bulky 5-(glucosyloxy)methyl groups in the major groove of T4 DNA had little effect on the efficiency of DNA strand scission mediated by bleomycin A2 or B2, suggesting the absence of important steric interactions between Fe(II).BLM and DNA in the major groove. In contrast, DNA cleavage mediated by bleomycin congeners was very sensitive to a major DNA conformational change, the B----Z transition. Salt and MgCl2 titrations of the DNA copolymers poly(dG-dC).poly(dG-dC) and poly(dG-MedC).poly(dG-MedC) demonstrated that bleomycin A2 and B2 did not cleave Z-DNA efficiently. In addition, circular dichroism titrations of these copolymers revealed that both bleomycin congeners increased the cation concentration necessary to induce the B----Z transition, implying that bleomycin preferentially binds to and stabilizes B-form DNA. These results are consistent with a model in which cytidine methylation at appropriate sequences of DNA is sufficient to induce subtle conformational changes that render the helix unreceptive to cleavage by some bleomycin congeners.  相似文献   

19.
Specific DNA cleavage and binding by vaccinia virus DNA topoisomerase I   总被引:12,自引:0,他引:12  
Cleavage of a defined linear duplex DNA by vaccinia virus DNA topoisomerase I was found to occur nonrandomly and infrequently. Approximately 12 sites of strand scission were detected within the 5372 nucleotides of pUC19 DNA. These sites could be classified as having higher or lower affinity for topoisomerase based on the following criteria. Higher affinity sites were cleaved at low enzyme concentration, were less sensitive to competition, and were most refractory to religation promoted by salt, divalent cations, and elevated temperature. Cleavage at lower affinity sites required higher enzyme concentration and was more sensitive to competition and induced religation. Cleavage site selection correlated with a pentameric sequence motif (C/T)CCTT immediately preceding the site of strand scission. Noncovalent DNA binding by topoisomerase predominated over covalent adduct formation, as revealed by nitrocellulose filter-binding studies. The noncovalent binding affinity of vaccinia topoisomerase for particular subsegments of pUC19 DNA correlated with the strength and/or the number of DNA cleavage sites contained therein. Thus, cleavage site selection is likely to be dictated by specific noncovalent DNA-protein interactions. This was supported by the demonstration that a mutant vaccinia topoisomerase (containing a Tyr----Phe substitution at the active site) that was catalytically inert and did not form the covalent intermediate, nevertheless bound DNA with similar affinity and site selectivity as the wild-type enzyme. Noncovalent binding is therefore independent of competence in transesterification. It is construed that the vaccinia topoisomerase is considerably more stringent in its cleavage and binding specificity for duplex DNA than are the cellular type I enzymes.  相似文献   

20.
DNA gyrase on the bacterial chromosome: DNA cleavage induced by oxolinic acid.   总被引:34,自引:0,他引:34  
Treatments in vivo of Escherichia coli with oxolinic acid, a potent inhibitor of DNA gyrase and DNA synthesis, lead to DNA cleavage when extracted chromosomes are incubated with sodium dodecyl sulfate. This DNA breakage has properties similar to those obtained in vitro with DNA gyrase reaction mixtures designed to assay production of supertwists: it is oxolinic acid-dependent, sodium dodecyl sulfate-activated, and at saturating drug concentrations produces double-strand DNA cleavage with a concommitant tight association of protein and DNA. In addition, identical treatments performed on a nalA mutant strain exhibit no DNA cleavage. Thus the DNA cleavage sites probably correspond to chromosomal DNA gyrase sites. Sedimentation measurements of the DNA cleavage products indicate that there are approximately 45 DNA breaks per chromosome. This value is similar to the number of domains of supercoiling found in isolated Escherichia coli chromosomes, suggesting one gyrase site per domain. At low oxolinic acid concentrations single-strand cleavages predominate after sodium dodecyl sulfate treatment, and the inhibition of DNA synthesis parallels the number of sites that obtain a single-strand scission. Double-strand breaks arise from the accumulation of single-strand cleavages in accordance with a model where each cleavage site contains two independent drug targets, one on each DNA strand. Since the nicking-closing subunit of gyrase is the target of oxolinic acid in vitro, we suggest that each gyrase site contains two nicking-closing subunits, one on each DNA strand, and that DNA synthesis requires both to be functional.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号