首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cardiac neural crest contributes to cardiomyogenesis in zebrafish   总被引:2,自引:0,他引:2  
In birds and mammals, cardiac neural crest is essential for heart development and contributes to conotruncal cushion formation and outflow tract septation. The zebrafish prototypical heart lacks outflow tract septation, raising the question of whether cardiac neural crest exists in zebrafish. Here, results from three distinct lineage-labeling approaches identify zebrafish cardiac neural crest cells and indicate that these cells have the ability to generate MF20-positive muscle cells in the myocardium of the major chambers during development. Fate-mapping demonstrates that cardiac neural crest cells originate both from neural tube regions analogous to those found in birds, as well as from a novel region rostral to the otic vesicle. In contrast to other vertebrates, cardiac neural crest invades the myocardium in all segments of the heart, including outflow tract, atrium, atrioventricular junction, and ventricle in zebrafish. Three distinct groups of premigratory neural crest along the rostrocaudal axis have different propensities to contribute to different segments in the heart and are correspondingly marked by unique combinations of gene expression patterns. Zebrafish will serve as a model for understanding interactions between cardiac neural crest and cardiovascular development.  相似文献   

3.
Several factors cause predictable changes in heart rate of crustaceans thus affecting basic heart rhythms. In decapod crustaceans these consist of: many internal factors including influences from neural and neurohormonal systems and chemosensory influences; many external factors including startling stimuli and other disturbance; ventilatory (scaphognathite) reversals; tail flips and other postural movements including locomotor activity; and variations in environmental factors such as oxygen level, temperature and air-exposure. In many cases the initial response involves temporary bradycardia or cardiac arrest. These responses may quickly facilitate to sustained low level stimuli although maintained strong stimulation will eventually be associated with cardio-acceleration and escape responses. Measurement of change in heart rate alone is rarely a sensible monitor of cardiac performance in crustaceans since simultaneous changes in cardiac stroke volume occur which may confound diagnosis. Hypoxia for instance causes decrease in heart rate of adult crustaceans but the apparent decrease in cardiac output is offset or reversed by increase in stroke volume. Concomitant changes occur in cardiac output and in the proportion of cardiac output which is delivered to particular tissues. In fact change in heart rhythm is only one factor in a complex suite of responses involving several physiological systems which compensate uniquely for changes in environmental or other stimuli. Both neural and neuro-hormonal factors are known to play a role in control of these complex responses.  相似文献   

4.
This paper describes the use of artificial neural networks to model cardiovascular autonomic control in a study of the hemodynamic changes associated with space flight. Cardiovascular system models were created including four parameters: heart rate, contractility, peripheral resistance, and venous tone. Artificial neural networks were then designed and trained. A technique known as backpropagation networking was used and the results of the application of this technique to heart rate control are presented and discussed.  相似文献   

5.
ObjectiveThe present study aims to simulate an alarm system for online detecting normal electrocardiogram (ECG) signals from abnormal ECG so that an individual's heart condition can be accurately and quickly monitored at any moment, and any possible serious dangers can be prevented.Materials and methodsFirst, the data from Physionet database were used to analyze the ECG signal. The data were collected equally from both males and females, and the data length varied between several seconds to several minutes. The heart rate variability (HRV) signal, which reflects heart fluctuations in different time intervals, was used due to the low spatial accuracy of ECG signal and its time constraint, as well as the similarity of this signal with the normal signal in some diseases. In this study, the proposed algorithm provided a return map as well as extracted nonlinear features of the HRV signal, in addition to the application of the statistical characteristics of the signal. Then, artificial neural networks were used in the field of ECG signal processing such as multilayer perceptron (MLP) and support vector machine (SVM), as well as optimal features, to categorize normal signals from abnormal ones.ResultsIn this paper, the area under the curve (AUC) of the ROC was used to determine the performance level of introduced classifiers. The results of simulation in MATLAB medium showed that AUC for MLP and SVM neural networks was 89.3% and 94.7%, respectively. Also, the results of the proposed method indicated that the more nonlinear features extracted from the ECG signal could classify normal signals from the patient.ConclusionThe ECG signal representing the electrical activity of the heart at different time intervals involves some important information. The signal is considered as one of the common tools used by physicians to diagnose various cardiovascular diseases, but unfortunately the proper diagnosis of disease in many cases is accompanied by an error due to limited time accuracy and hiding some important information related to this signal from the physicians' vision leading to the risks of irreparable harm for patients. Based on the results, designing the proposed alarm system can help physicians with higher speed and accuracy in the field of diagnosing normal people from patients and can be used as a complementary system in hospitals.  相似文献   

6.
BACKGROUND: Diabetes mellitus during pregnancy increases the risk for congenital heart disease in the offspring. The majority of the cardiovascular malformations occur in the outflow tract and pharyngeal arch arteries, where neural crest cells are essential for normal development. We studied the effects of specific exposure of neural crest cells to elevated glucose on heart development. Antioxidants reduce the damaging effect of glucose on neural crest cells in vitro; therefore, we investigated the effect of supplementing N-acetylcysteine in vivo. METHODS: Cardiac neural crest of HH 8-12 chicken embryos was directly exposed by a single injection in the neural tube with 30 mM D-glucose (or 30 mM L-glucose as a control). To examine the effect of a reduction in oxidative stress, we added 2 mM N-acetylcysteine to the injected D-glucose. RESULTS: Exposure of neural crest cells to elevated D-glucose-induced congenital heart malformations in 82% of the embryos. In the embryos injected with L-glucose, only 9% developed a heart malformation. As expected, all malformations were located in the outflow tract and pharyngeal arch arteries. The frequency of heart malformations decreased from 82% to 27% when 2 mM N-acetylcysteine was added to the injected D-glucose. CONCLUSIONS: These data are the first to confirm that the vulnerability of neural crest cells to elevated glucose induces congenital heart malformations. The fact that N-acetylcysteine limits the teratogenicity of glucose implies that its damaging effect is mediated by an increase of oxidative stress in the neural crest cells.  相似文献   

7.
To establish whether a region of the cranial neural crest contributes cells to the developing heart of Ambystoma mexicanum (axolotl), as it does in many other vertebrates, we constructed a fate map for the neural crest in late neurula stage (stage 19-20) embryos. The fluorescent vital dye, Dil, was used as the lineage label. The various regions of the cranial neural folds were identified in relation to such landmarks as the developing forebrain, midbrain and hindbrain, and the appearance and extent of emerging somites. Labelled cells originating in the rhombencephalic region were found in the aortic arches and in the truncus arteriosus, and occasionally in the walls of the conus arteriosus. Cells were also found in the third and fourth branchial arches. Labelled neural crest from the adjacent anterior trunk region appeared neither in the heart nor the visceral skeleton, whereas those from the mesencephalic region contributed to the first hypobranchial cartilage and to the first three branchial arches, but not to the heart. No labelled cells from any of the regions were seen in the ventricle or auricle.  相似文献   

8.
The primary heart field in all vertebrates is thought to be derived exclusively from lateral plate mesoderm (LPM), which gives rise to a cardiac tube shortly after gastrulation. The heart tube then begins looping and additional cells are added from other embryonic regions, including the secondary heart field, cardiac neural crest and the proepicardial organ. Here we show in zebrafish that neural crest cells invade and contribute cardiac myosin light chain2 (cmlc2)-positive cardiomyocytes to the primary heart field. Knockdown of semaphorin3D, which is expressed in the neural crest but apparently not in LPM, reduces the size of the primary heart field and the number of cardiomyocytes in the primary heart field by 20% before formation of the primary heart tube. Sema3D morphants have subsequent complex congenital heart defects, including hypertrophic cardiomyocytes, decreased ventricular size and defects in trabeculation and in atrioventricular (AV) valve development. Neuropilin1A, a semaphorin receptor, is expressed in LPM but apparently not in the neural crest, and nrp1A morphants have cardiac development defects. We propose that a population of sema3D-dependent neural crest cells follow a novel migratory pathway, perhaps toward nrp1A-expressing LPM, and serve as an important early source of cardiomyocytes in the primary heart field.  相似文献   

9.
Congestive heart failure with preserved left ventricular systolic function has emerged as a growing epidemic medical syndrome in developed countries, which is characterized by high morbidity and mortality rates. Rapid and accurate diagnosis of this condition is essential for optimizing the therapeutic management. The diagnosis of congestive heart failure is challenging in patients presenting without obvious left ventricular systolic dysfunction and additional diagnostic information is most commonly required in this setting. Comprehensive Doppler echocardiography is the single most useful diagnostic test recommended by the ESC and ACC/AHA guidelines for assessing left ventricular ejection fraction and cardiac abnormalities in patients with suspected congestive heart failure, and non-invasively determined basal or exercise-induced pulmonary capillary hypertension is likely to become a hallmark of congestive heart failure in symptomatic patients with preserved left ventricular systolic function. The present review will focus on the current clinical applications of spectral tissue Doppler echocardiography used as a reliable noninvasive surrogate for left ventricular diastolic pressures at rest as well as during exercise in the diagnosis of heart failure with preserved left ventricular systolic function. Chronic congestive heart failure, a disease of exercise, and acute heart failure syndromes are characterized by specific pathophysiologic and diagnostic issues, and these two clinical presentations will be discussed separately.  相似文献   

10.
Mice harboring a null mutation in the gap junction protein connexin43 (Cx43) die shortly after birth due to an obstruction of the right ventricular outflow tract of the heart. These hearts exhibit prominent pouches at the base of the pulmonary outlet, i.e., morphological abnormalities that were ascribed to Cx43-deficiency in neural crest cells. In order to examine the Cx43 expression pattern in neural crest cells and derived tissues and to test whether neural crest-specific deletion of Cx43 leads to the conotruncal defects seen in Cx43null mice, we ablated Cx43 using a Wnt1-Cre transgene. Deletion of Cx43 was complete and occurred in neural crest cells as well as in neural crest-derived tissues. Nevertheless, hearts of mice lacking Cx43 specifically in neural crest cells were indistinguishable from controls. Thus, the morphological heart abnormalities of Cx43 null mice are most likely not caused by lack of Cx43 in neural crest cells.  相似文献   

11.
Morphogenesis of the cardiac arterial pole is dependent on addition of myocardium and smooth muscle from the secondary heart field and septation by cardiac neural crest cells. Cardiac neural crest ablation results in persistent truncus arteriosus and failure of addition of myocardium from the secondary heart field leading to malalignment of the arterial pole with the ventricles. Previously, we have shown that elevated FGF signaling after neural crest ablation causes depressed Ca2+ transients in the primary heart tube. We hypothesized that neural crest ablation results in elevated FGF8 signaling in the caudal pharynx that disrupts secondary heart field development. In this study, we show that FGF8 signaling is elevated in the caudal pharynx after cardiac neural crest ablation. In addition, treatment of cardiac neural crest-ablated embryos with FGF8b blocking antibody or an FGF receptor blocker rescues secondary heart field myocardial development in a time- and dose-dependent manner. Interestingly, reduction of FGF8 signaling in normal embryos disrupts myocardial secondary heart field development, resulting in arterial pole malalignment. These results indicate that the secondary heart field myocardium is particularly sensitive to FGF8 signaling for normal conotruncal development, and further, that cardiac neural crest cells modulate FGF8 signaling in the caudal pharynx.  相似文献   

12.
PlexinA2 and semaphorin signaling during cardiac neural crest development.   总被引:5,自引:0,他引:5  
Classic studies using avian model systems have demonstrated that cardiac neural crest cells are required for proper development of the cardiovascular system. Environmental influences that perturb neural crest development cause congenital heart defects in laboratory animals and in man. However, little progress has been made in determining molecular programs specifically regulating cardiac neural crest migration and function. Only recently have complex transgenic tools become available that confirm the presence of cardiac neural crest cells in the mammalian heart. These studies have relied upon the use of transgenic mouse lines and fate-mapping studies using Cre recombinase and neural crest-specific promoters. In this study, we use these techniques to demonstrate that PlexinA2 is expressed by migrating and postmigratory cardiac neural crest cells in the mouse. Plexins function as co-receptors for semaphorin signaling molecules and mediate axon pathfinding in the central nervous system. We demonstrate that PlexinA2-expressing cardiac neural crest cells are patterned abnormally in several mutant mouse lines with congenital heart disease including those lacking the secreted signaling molecule Semaphorin 3C. These data suggest a parallel between the function of semaphorin signaling in the central nervous system and in the patterning of cardiac neural crest in the periphery.  相似文献   

13.
In vertebrate embryos, cardiac precursor cells of the primary heart field are specified in the lateral mesoderm. These cells converge at the ventral midline to form the linear heart tube, and give rise to the atria and the left ventricle. The right ventricle and the outflow tract are derived from an adjacent population of precursors known as the second heart field. In addition, the cardiac neural crest contributes cells to the septum of the outflow tract to separate the systemic and the pulmonary circulations. The amphibian heart has a single ventricle and an outflow tract with an incomplete spiral septum; however, it is unknown whether the cardiac neural crest is also involved in outflow tract septation, as in amniotes. Using a combination of tissue transplantations and molecular analyses in Xenopus we show that the amphibian outflow tract is derived from a second heart field equivalent to that described in birds and mammals. However, in contrast to what we see in amniotes, it is the second heart field and not the cardiac neural crest that forms the septum of the amphibian outflow tract. In Xenopus, cardiac neural crest cells remain confined to the aortic sac and arch arteries and never populate the outflow tract cushions. This significant difference suggests that cardiac neural crest cell migration into the cardiac cushions is an amniote-specific characteristic, presumably acquired to increase the mass of the outflow tract septum with the evolutionary need for a fully divided circulation.  相似文献   

14.
Cardiac neural crest cells are multipotent migratory cells that contribute to the formation of the cardiac outflow tract and pharyngeal arch arteries. Neural crest-related developmental defects account for a large proportion of congenital heart disorders. Recently, the genetic bases for some of these disorders have been elucidated, and signaling pathways required for induction, migration and differentiation of cardiac neural crest have emerged. Bone morphogenetic proteins comprise a family of secreted ligands implicated in numerous aspects of organogenesis, including heart and neural crest development. However, it has remained generally unclear whether BMP ligands act directly on neural crest or cardiac myocytes during cardiac morphogenesis, or function indirectly by activating other cell types. Studies on BMP receptor signaling during organogenesis have been hampered by the fact that receptor knockouts often lead to early embryonic lethality. We have used a Cre/loxP system for neural crest-specific deletion of the type I receptor, ALK2, in mouse embryos. Mutant mice display cardiovascular defects, including persistent truncus arteriosus, and abnormal maturation of the aortic arch reminiscent of common forms of human congenital heart disease. Migration of mutant neural crest cells to the outflow tract is impaired, and differentiation to smooth muscle around aortic arch arteries is deficient. Moreover, in Alk2 mutants, the distal outflow tract fails to express Msx1, one of the major effectors of BMP signaling. Thus, the type I BMP receptor ALK2 plays an essential cell-autonomous role in the development of the cardiac outflow tract and aortic arch derivatives.  相似文献   

15.
Connexin 43 (Cx43) is expressed in the embryonic heart, cardiac neural crest (CNC) and neural tube, and germline knockout (KO) of Cx43 results in aberrant cardiac outflow tract (OFT) formation and abnormal coronary deployment. Prior studies suggest a vital role for CNC expression of Cx43 in heart development. Surprisingly, we found that conditional knockout (CKO) of Cx43 in the dorsal neural tube and CNC mediated by Wnt1-Cre failed to recapitulate the Cx43-null OFT phenotype, although coronary vasculature was abnormal in this mutant line. A broader CKO mediated by P3pro (Pax3)-Cre, involving both ventral and dorsal aspects of the thoracic neural tube and CNC, resulted in infundibular bulging and coronary anomalies similar to those seen in germline Cx43-null hearts. P3pro-Cre-mediated loss of Cx43 in the neural tube was characterized by a late phase of cellular delamination from the dorsal and lateral neural tube, a markedly increased abundance of neuroepithelium-derived cells outside of the neural tube and an excess of such cells infiltrating the heart and infundibulum. Thus, expression of Cx43 in the CNC is crucial for normal coronary deployment, but Cx43 is not required in the CNC for normal OFT morphogenesis. Rather, this study suggests a novel function for Cx43 in which Cx43 acts through non-crest neuroepithelial cells to suppress cellular delamination from the neural tube and thereby preserve normal OFT development.  相似文献   

16.
Hole is a novel gene product isolated from a chick heart subtractive hybridization. Hole is a six-transmembrane protein (predicted size 311 and 317 amino acids in chick and mouse) expressed in the cardiac crescent and later in the myocardium of the developing chick heart, as well as in the fusing neural tube and ganglia. Mouse hole is not expressed in the developing heart, although it does share neural expression seen in the chick.  相似文献   

17.
The arterial pole of the heart is the region where the ventricular myocardium continues as the vascular smooth muscle tunics of the aorta and pulmonary trunk. It has been shown that the arterial pole myocardium derives from the secondary heart field and the smooth muscle tunic of the aorta and pulmonary trunk derives from neural crest. However, this neural crest-derived smooth muscle does not extend to the arterial pole myocardium leaving a region at the base of the aorta and pulmonary trunk that is invested by vascular smooth muscle of unknown origin. Using tissue marking and vascular smooth muscle markers, we show that the secondary heart field, in addition to providing myocardium to the cardiac outflow tract, also generates prospective smooth muscle that forms the proximal walls of the aorta and pulmonary trunk. As a result, there are two seams in the arterial pole: first, the myocardial junction with secondary heart field-derived smooth muscle; second, the secondary heart field-derived smooth muscle with the neural crest-derived smooth muscle. Both of these seams are points where aortic dissection frequently occurs in Marfan's and other syndromes.  相似文献   

18.
Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol‐exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies. Birth Defects Research (Part C) 102:227–250, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
Neural crest cells are multipotential cells that delaminate from the dorsal neural tube and migrate widely throughout the body. A subregion of the cranial neural crest originating between the otocyst and somite 3 has been called "cardiac neural crest" because of the importance of these cells in heart development. Much of what we know about the contribution and function of the cardiac neural crest in cardiovascular development has been learned in the chick embryo using quail-chick chimeras to study neural crest migration and derivatives as well as using ablation of premigratory neural crest cells to study their function. These studies show that cardiac neural crest cells are absolutely required to form the aorticopulmonary septum dividing the cardiac arterial pole into systemic and pulmonary circulations. They support the normal development and patterning of derivatives of the caudal pharyngeal arches and pouches, including the great arteries and the thymus, thyroid and parathyroids. Recently, cardiac neural crest cells have been shown to modulate signaling in the pharynx during the lengthening of the outflow tract by the secondary heart field. Most of the genes associated with cardiac neural crest function have been identified using mouse models. These studies show that the neural crest cells may not be the direct cause of abnormal cardiovascular development but they are a major component in the complex tissue interactions in the caudal pharynx and outflow tract. Since, cardiac neural crest cells span from the caudal pharynx into the outflow tract, they are especially susceptible to any perturbation in or by other cells in these regions. Thus, understanding congenital cardiac outflow malformations in human sequences of malformations as represented by the DiGeorge syndrome will necessarily require understanding development of the cardiac neural crest.  相似文献   

20.
Abstract. The premature death ( p ) mutation of Ambystoma mexicanum causes abnormalities in a variety of organs, including the gills, liver, and heart. In vitro culture techniques were used to test the hypothesis that mutant anterior endoderm is defective for several functions. We find that the endoderm is normal in its ability to induce cartilage formation in cranial neural crest, and cardio-myogenesis in mesoderm. Mutant neural crest, however, was found to be incapable of chondrogenesis, although other subpopulations of the neural crest were apparently normal. We therefore propose that the p gene does not affect the endoderm, as previously suspected, but rather affects an intermediate step between the initial specification of the neural crest and its final segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号