共查询到20条相似文献,搜索用时 8 毫秒
1.
Association of the Tim14.Tim16 subcomplex with the TIM23 translocase is crucial for function of the mitochondrial protein import motor 总被引:3,自引:0,他引:3
Mokranjac D Berg A Adam A Neupert W Hell K 《The Journal of biological chemistry》2007,282(25):18037-18045
Tim14 and Tim16 are essential components of the import motor of the mitochondrial TIM23 preprotein translocase. Tim14 contains a J domain in the matrix space that is anchored in the inner membrane by a transmembrane segment. Tim16 is a J-related protein with a moderately hydrophobic segment at its N terminus. The J and J-like domains function in the regulation of the ATPase activity of the Hsp70 chaperone of the import motor. We report here on the role of the hydrophobic segments of Tim16 and Tim14 in the TIM23 translocase. Yeast cells lacking the hydrophobic N-terminal segment in either Tim16 or Tim14 are viable but show growth defects and decreased import rates of matrix-targeted preproteins into mitochondria. The interaction of the Tim14.Tim16 complex with the core complex of the TIM23 translocase is destabilized in these cells. In particular, the N-terminal domain of Tim16 is crucial for the interaction of the Tim14.Tim16 complex with the TIM23 preprotein translocase. Deletion of hydrophobic segments in both, Tim16 and Tim14, is lethal. We conclude that import into the matrix space of mitochondria requires association of the co-chaperones Tim16 and Tim14 with the TIM23 preprotein translocase. 相似文献
2.
Mokranjac D Sichting M Popov-Celeketić D Berg A Hell K Neupert W 《The Journal of biological chemistry》2005,280(36):31608-31614
The import motor of the mitochondrial (mt)TIM23 complex drives translocation of presequence-containing preproteins across the mitochondrial inner membrane in an ATP-dependent manner. Tim44 is the central component of the motor. It recruits mtHsp70, which binds the incoming preproteins. The J protein Tim14 stimulates the ATPase activity of mtHsp70 and thereby enables efficient binding of mtHsp70 to preproteins. Tim16 is a J-like protein that forms a stable subcomplex with Tim14 and recruits it to the translocase. All subunits of the TIM23 translocase but one are essential for yeast cell viability. Yeast cells contain a close homologue of Tim14, Mdj2. In contrast to Tim14, its deletion leads to no obvious growth defect. In the present study we analyzed Mdj2 and compared it with Tim14. Mdj2 forms a complex with Tim16 and is recruited to the TIM23 translocase. It stimulates the ATPase activity of mtHsp70 to the same extent that Tim14 does. Mdj2 is expressed at a lower level compared with Tim14, and its complex with Tim16 is less stable. However, overexpressed Mdj2 fully restores the growth of cells lacking Tim14. We conclude that Mdj2 is a functional J protein and a component of the mitochondrial import motor. 相似文献
3.
The import motor of the mitochondrial translocase of the inner membrane (TIM23) mediates the ATP-dependent translocation of preproteins into the mitochondrial matrix by cycles of binding to and release from mtHsp70. An essential step of this process is the stimulation of the ATPase activity of mtHsp70 performed by the J cochaperone Tim14. Tim14 forms a complex with the J-like protein Tim16. The crystal structure of this complex shows that the conserved domains of the two proteins have virtually identical folds but completely different surfaces enabling them to perform different functions. The Tim14-Tim16 dimer reveals a previously undescribed arrangement of J and J-like domains. Mutations that destroy the complex between Tim14 and Tim16 are lethal demonstrating that complex formation is an essential requirement for the viability of cells. We further demonstrate tight regulation of the cochaperone activity of Tim14 by Tim16. The first crystal structure of a J domain in complex with a regulatory protein provides new insights into the function of the mitochondrial TIM23 translocase and the Hsp70 chaperone system in general. 相似文献
4.
5.
Thiol‐disulphide redox regulation has a key role during the biogenesis of mitochondrial intermembrane space (IMS) proteins. Only the Cys‐reduced form of precursor proteins can be imported into mitochondria, which is followed by disulphide bond formation in the mitochondrial IMS. In contrast to the wealth of knowledge on the oxidation process inside mitochondria, little is known about how precursors are maintained in an import‐competent form in the cytosol. Here we provide the first evidence that the cytosolic thioredoxin system is required to maintain the IMS small Tim proteins in reduced forms and facilitate their mitochondrial import during respiratory growth. 相似文献
6.
All small Tim proteins of the mitochondrial intermembrane space contain two conserved CX(3)C motifs, which form two intramolecular disulfide bonds essential for function, but only the cysteine-reduced, but not oxidized, proteins can be imported into mitochondria. We have shown that Tim10 can be oxidized by glutathione under cytosolic concentrations. However, it was unknown whether oxidative folding of other small Tims can occur under similar conditions and whether oxidative folding competes kinetically with mitochondrial import. In the present study, the effect of glutathione on the cysteine-redox state of Tim9 was investigated, and the standard redox potential of Tim9 was determined to be approx. -0.31 V at pH 7.4 and 25 degrees C with both the wild-type and Tim9F43W mutant proteins, using reverse-phase HPLC and fluorescence approaches. The results show that reduced Tim9 can be oxidized by glutathione under cytosolic concentrations. Next, we studied the rate of mitochondrial import and oxidative folding of Tim9 under identical conditions. The rate of import was approx. 3-fold slower than that of oxidative folding of Tim9, resulting in approx. 20% of the precursor protein being imported into an excess amount of mitochondria. A similar correlation between import and oxidative folding was obtained for Tim10. Therefore we conclude that oxidative folding and mitochondrial import are kinetically competitive processes. The efficiency of mitochondrial import of the small Tim proteins is controlled, at least partially in vitro, by the rate of oxidative folding, suggesting that a cofactor is required to stabilize the cysteine residues of the precursors from oxidation in vivo. 相似文献
7.
The Tim9p/10p and Tim8p/13p complexes bind to specific sites on Tim23p during mitochondrial protein import 总被引:2,自引:0,他引:2 下载免费PDF全文
The import of polytopic membrane proteins into the mitochondrial inner membrane (IM) is facilitated by Tim9p/Tim10p and Tim8p/Tim13p protein complexes in the intermembrane space (IMS). These complexes are proposed to act as chaperones by transporting the hydrophobic IM proteins through the aqueous IMS and preventing their aggregation. To examine the nature of this interaction, Tim23p molecules containing a single photoreactive cross-linking probe were imported into mitochondria in the absence of an IM potential where they associated with small Tim complexes in the IMS. On photolysis and immunoprecipitation, a probe located at a particular Tim23p site (27 different locations were examined) was found to react covalently with, in most cases, only one of the small Tim proteins. Tim8p, Tim9p, Tim10p, and Tim13p were therefore positioned adjacent to specific sites in the Tim23p substrate before its integration into the IM. This specificity of binding to Tim23p strongly suggests that small Tim proteins do not function solely as general chaperones by minimizing the exposure of nonpolar Tim23p surfaces to the aqueous medium, but may also align a folded Tim23p substrate in the proper orientation for delivery and integration into the IM at the TIM22 translocon. 相似文献
8.
Martinez-Caballero S Grigoriev SM Herrmann JM Campo ML Kinnally KW 《The Journal of biological chemistry》2007,282(6):3584-3593
The TIM23 complex mediates import of preproteins into mitochondria, but little is known of the mechanistic properties of this translocase. Here patch clamping reconstituted inner membranes allowed for first time insights into the structure and function of the preprotein translocase. Our findings indicate that the TIM23 channel has "twin pores" (two equal sized pores that cooperatively gate) thereby strikingly resembling TOM, the translocase of the outer membrane. Tim17p and Tim23p are homologues, but their functions differ. Tim23p acts as receptor for preproteins and may largely constitute the preprotein-conducting passageway. Conversely depletion of Tim17p induces a collapse of the twin pores into a single pore, whereas N terminus deletion or C terminus truncation results in variable sized pores that cooperatively gate. Further analysis of Tim17p mutants indicates that the N terminus is vital for both voltage sensing and protein sorting. These results suggest that although Tim23p is the main structural unit of the pore Tim17p is required for twin pore structure and provides the voltage gate for the TIM23 channel. 相似文献
9.
The TIM23 translocase mediates the deltaPsi- and ATP-dependent import of proteins into mitochondria. We identified Tim14 as a novel component of the TIM23 translocase. Tim14 is an integral protein of the inner membrane with a typical J-domain exposed to the matrix space. TIM14 genes are present in the genomes of virtually all eukaryotes. In yeast, Tim14 is essential for viability. Mitochondria from cells depleted of Tim14 are deficient in the import of proteins mediated by the TIM23 complex. In particular, import of proteins that require the action of mtHsp70 is affected. Tim14 interacts with Tim44 and mtHsp70 in an ATP-dependent manner. A mutation in the HPD motif of the J-domain of Tim14 is lethal. Thus, Tim14 is a constituent of the mitochondrial import motor. We propose a model in which Tim14 is required for the activation of mtHsp70 and enables this chaperone to act in a rapid and regulated manner in the Tim44-mediated trapping of unfolded preproteins entering the matrix. 相似文献
10.
Background
The Cajal body (CB) is a nuclear suborganelle involved in the biogenesis of small nuclear ribonucleoproteins (snRNPs), which are vital for pre-mRNA splicing. Newly imported Sm-class snRNPs traffic through CBs, where the snRNA component of the snRNP is modified, and then target to other nuclear domains such as speckles and perichromatin fibrils. It is not known how nascent snRNPs localize to the CB and are released from this structure after modification. The marker protein for CBs, coilin, may play a role in snRNP biogenesis given that it can interact with snRNPs and SMN, the protein mutated in Spinal Muscular Atrophy. Loss of coilin function in mice leads to significant viability and fertility problems and altered CB formation. 相似文献11.
Import of proteins into the matrix is driven by the Tim23 presequence translocase-associated import motor PAM. The core component of PAM is the mitochondrial chaperone mtHsp70, which ensures efficient translocation of proteins across the inner membrane through interactions with the J-protein complex Pam16–Pam18 (Tim16–Tim14) and its cochaperone Tim44. The recently identified non-essential Pam17 is a further member of PAM. Genetic and biochemical analyses reveal synthetic interactions between PAM17 and TIM44. Pam17 is involved in an early stage of protein translocation whereas Tim44 assists in a later step of transport, suggesting that both proteins can cooperate in a complementary manner in protein import. 相似文献
12.
13.
Tim9p, an essential partner subunit of Tim10p for the import of mitochondrial carrier proteins. 总被引:16,自引:3,他引:16 下载免费PDF全文
C M Koehler S Merchant W Oppliger K Schmid E Jarosch L Dolfini T Junne G Schatz K Tokatlidis 《The EMBO journal》1998,17(22):6477-6486
Tim10p, a protein of the yeast mitochondrial intermembrane space, was shown previously to be essential for the import of multispanning carrier proteins from the cytoplasm into the inner membrane. We now identify Tim9p, another essential component of this import pathway. Most of Tim9p is associated with Tim10p in a soluble 70 kDa complex. Tim9p and Tim10p co-purify in successive chromatographic fractionations and co-immunoprecipitated with each other. Tim9p can be cross-linked to a partly translocated carrier protein. A small fraction of Tim9p is bound to the outer face of the inner membrane in a 300 kDa complex whose other subunits include Tim54p, Tim22p, Tim12p and Tim10p. The sequence of Tim9p is 25% identical to that of Tim10p and Tim12p. A Ser67-->Cys67 mutation in Tim9p suppresses the temperature-sensitive growth defect of tim10-1 and tim12-1 mutants. Tim9p is a new subunit of the TIM machinery that guides hydrophobic inner membrane proteins across the aqueous intermembrane space. 相似文献
14.
The mitochondrial presequence translocase: an essential role of Tim50 in directing preproteins to the import channel 总被引:12,自引:0,他引:12
Geissler A Chacinska A Truscott KN Wiedemann N Brandner K Sickmann A Meyer HE Meisinger C Pfanner N Rehling P 《Cell》2002,111(4):507-518
Mitochondrial proteins with N-terminal targeting signals are transported across the inner membrane via the presequence translocase, which consists of membrane-integrated channel proteins and the matrix Hsp70 import motor. It has not been known how preproteins are directed to the import channel. We have identified the essential protein Tim50, which exposes its major domain to the intermembrane space. Tim50 interacts with preproteins in transit and directs them to the channel protein Tim23. Inactivation of Tim50 strongly inhibits the import of preproteins with a classical matrix-targeting signal, while preproteins carrying an additional inner membrane-sorting signal do not strictly depend on Tim50. Thus, Tim50 is crucial for guiding the precursors of matrix proteins to their insertion site in the inner membrane. 相似文献
15.
16.
Tim50 is a subunit of the TIM23 complex that links protein translocation across the outer and inner mitochondrial membranes 总被引:10,自引:0,他引:10
Based on the results of site-specific photocrosslinking of translocation intermediates, we have identified Tim50, a component of the yeast TIM23 import machinery, which mediates translocation of presequence-containing proteins across the mitochondrial inner membrane. Tim50 is anchored to the inner mitochondrial membrane, exposing the C-terminal domain to the intermembrane space. Tim50 interacts with the N-terminal intermembrane space domain of Tim23. Functional defects of Tim50 either by depletion of the protein or addition of anti-Tim50 antibodies block the protein translocation across the inner membrane. A translocation intermediate accumulated at the TOM complex is crosslinked to Tim50. We suggest that Tim50, in cooperation with Tim23, facilitates transfer of the translocating protein from the TOM complex to the TIM23 complex 相似文献
17.
Active unfolding of precursor proteins during mitochondrial protein import. 总被引:8,自引:2,他引:8 下载免费PDF全文
Precursor proteins made in the cytoplasm must be in an unfolded conformation during import into mitochondria. Some precursor proteins have tightly folded domains but are imported faster than they unfold spontaneously, implying that mitochondria can unfold proteins. We measured the import rates of artificial precursors containing presequences of varying length fused to either mouse dihydrofolate reductase or bacterial barnase, and found that unfolding of a precursor at the mitochondrial surface is dramatically accelerated when its presequence is long enough to span both membranes and to interact with mhsp70 in the mitochondrial matrix. If the presequence is too short, import is slow but can be strongly accelerated by urea-induced unfolding, suggesting that import of these 'short' precursors is limited by spontaneous unfolding at the mitochondrial surface. With precursors that have sufficiently long presequences, unfolding by the inner membrane import machinery can be orders of magnitude faster than spontaneous unfolding, suggesting that mhsp70 can act as an ATP-driven force-generating motor during protein import. 相似文献
18.
Frazier AE Dudek J Guiard B Voos W Li Y Lind M Meisinger C Geissler A Sickmann A Meyer HE Bilanchone V Cumsky MG Truscott KN Pfanner N Rehling P 《Nature structural & molecular biology》2004,11(3):226-233
Mitochondrial preproteins destined for the matrix are translocated by two channel-forming transport machineries, the translocase of the outer membrane and the presequence translocase of the inner membrane. The presequence translocase-associated protein import motor (PAM) contains four essential subunits: the matrix heat shock protein 70 (mtHsp70) and its three cochaperones Mge1, Tim44 and Pam18. Here we report that the PAM contains a fifth essential subunit, Pam16 (encoded by Saccharomyces cerevisiae YJL104W), which is selectively required for preprotein translocation into the matrix, but not for protein insertion into the inner membrane. Pam16 interacts with Pam18 and is needed for the association of Pam18 with the presequence translocase and for formation of a mtHsp70-Tim44 complex. Thus, Pam16 is a newly identified type of motor subunit and is required to promote a functional PAM reaction cycle, thereby driving preprotein import into the matrix. 相似文献
19.
The TIM23 complex mediates translocation of proteins across, and their lateral insertion into, the mitochondrial inner membrane. Translocation of proteins requires both the membrane-embedded core of the complex and its ATP-dependent import motor. Insertion of some proteins, however, occurs in the absence of ATP, questioning the need for the import motor during lateral insertion. We show here that the import motor associates with laterally inserted proteins even when its ATPase activity is not required. Furthermore, our results suggest a role for the import motor in lateral insertion. Thus, the import motor is involved in ATP-dependent translocation and ATP-independent lateral insertion. 相似文献
20.
Structural and Functional Requirements for Activity of the Tim9–Tim10 Complex in Mitochondrial Protein Import 下载免费PDF全文
Michael J. Baker Chaille T. Webb David A. Stroud Catherine S. Palmer Ann E. Frazier Bernard Guiard Agnieszka Chacinska Jacqueline M. Gulbis Michael T. Ryan 《Molecular biology of the cell》2009,20(3):769-779
The Tim9–Tim10 complex plays an essential role in mitochondrial protein import by chaperoning select hydrophobic precursor proteins across the intermembrane space. How the complex interacts with precursors is not clear, although it has been proposed that Tim10 acts in substrate recognition, whereas Tim9 acts in complex stabilization. In this study, we report the structure of the yeast Tim9–Tim10 hexameric assembly determined to 2.5 Å and have performed mutational analysis in yeast to evaluate the specific roles of Tim9 and Tim10. Like the human counterparts, each Tim9 and Tim10 subunit contains a central loop flanked by disulfide bonds that separate two extended N- and C-terminal tentacle-like helices. Buried salt-bridges between highly conserved lysine and glutamate residues connect alternating subunits. Mutation of these residues destabilizes the complex, causes defective import of precursor substrates, and results in yeast growth defects. Truncation analysis revealed that in the absence of the N-terminal region of Tim9, the hexameric complex is no longer able to efficiently trap incoming substrates even though contacts with Tim10 are still made. We conclude that Tim9 plays an important functional role that includes facilitating the initial steps in translocating precursor substrates into the intermembrane space. 相似文献