首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Four subunits of the acetylcholine receptor molecule, obtained from the electric organ of Torpedo ocellata, have been isolated using polyacrylamide gel electrophoresis, and assayed by titration with a fluorescent lanthanide, terbium, and by affinity-labeling with p-(N-maleimido)benzyl [trimethyl-3H] ammonium iodide. The site with which the activator-analogue affinity label reacts, as well as the terbium-binding sites, are mainly associated with the smallest of the subunits of an apparent molecular weight of 40,000. Calcium competes with terbium for these binding sites. The affinity for terbium is the same in the intact molecule as in the subunit (KTb ? 19 ± 1 μM), but the affinity for calcium decreases by a factor of 4 (KCa ? 4 mM) in the subunit. Hydrolysis of the receptor, catalyzed by trypsin and chymotrypsin, to peptides with an apparent molecular weight of 8000 or less, does not affect the terbium-binding sites. These experiments indicate that the binding sites for neural activators and for calcium are associated with the same subunit, and that the terbium- and calcium-binding sites reflect structural properties of the polypeptide chain rather than the three-dimensional structure of the protein.  相似文献   

2.
Brief exposure to the protein neurotoxin, β-bungarotoxin, is known to disrupt neuromuscular transmission irreversibly by blocking the release of transmitter from the nerve terminal. This neurotoxin also has a phospholipase A2 activity, although phospholipases in general are not very toxic. To determine if the toxicity of this molecule might result from specific binding to neural tissue, we have looked for high affinity, saturable binding using 125I-labeled toxin. At low membrane protein concentration 125I-labeled toxin binding was directly proportional to the amount of membrane; at fixed membrane concentration 125I-labeled toxin showed saturable binding. It was unlikely that iodination markedly changed the toxin's properties since the iodinated toxin had a comparable binding affinity to that of native toxin as judged by competition experiments. Comparison of toxin binding to brain, liver and red blood cell membranes showed that all had high affinity binding sites with dissociation constants between one and two nanomolar. This is comparable to the concentrations previously shown to inhibit mitochondrial function. However, the density of these sites showed marked variation such that the density of sites was 13.0 pmol/mg protein for a brain membrane preparation, 2.4 pmol/mg for liver and 0.25 pmol/mg for red blood cell membranes.In earlier work we had shown that calcium uptake by brain mitochondria is inhibited at much lower toxin concentrations than is liver mitochondrial uptake. Both liver and brain mitochondria bind toxin specifically, but the density of 125I-labeled toxin binding sites on brain mitochondrial prepartions (3.3 ± 0.3 pmol/mg) exceeded by a factor of ten the density on liver mitochondrial preparations (0.3 ± 0.05 pmol/mg). It is also shown that the labeled toxin does not cross synaptosomal membranes, suggesting that mitochondria may not be the site of action of the toxin in vivo. We conclude the β-bungarotoxin is an enzyme which can bind specifically with high affinity to cell membranes.  相似文献   

3.
Studies of the localization of the Na+-dependent sugar transport in monolayers of LLC PK1 cells show that the uptake of a methyl α-d-glucoside, a nonmetabolizable sugar which shares the glucose-galactose transport system, occurs mainly from the apical side of the monolayer. Kinetics of [3H]phlorizin binding to monolayers of LLC PK1 cells were also measured. These studies demonstrate the presence of two distinct classes of receptor sites. The class comprising high affinity binding sites had a dissociation constant (Kd) of 1.2 μM and a concentration of high affinity receptors of 0.30 μmol binding sites per g DNA. The other class involving low affinity sites had a Kd of 240 μM with the number of binding sites equal to 12 μmol/g DNA. Phlorizin binding at high affinity binding sites is a Na+-dependent process. Binding at the low affinity sites on the contrary is Na+-independent. The mode of action of Na+ on the high affinity binding sites was to increase the dissociation constant without modifying the number of binding sites. The Na+ dependence and the matching of Kd for high affinity binding sites with the Ki of phlorizin for the inhibition of methyl α-d-glucoside strongly suggest that the high affinity phlorizin binding site is, or is part of the methyl α-d-glucoside transport system. Binding studies from either side of the monolayer also show that the binding of phlorizin at the Na+ dependent high affinity binding sites occurs mainly from the apical rather than the basolateral side. The specific location of the Na+-dependent sugar transport system in the apical membrane of LLC PK1 cells is, therefore, another expression of the functional polarization of epithelial cells that is retained under tissue culture condition. In addition, since this sugar transport almost disappears after the cells are brought into suspension, it can be used as a marker to study the development of the apical membrane in this cell line.  相似文献   

4.
Binding characteristics of benzodiazepine receptors were studied with synaptosomal and microsomal membranes from rabbit brain invitro utilizing [methyl-3H]diazepam. In synaptosomal membranes, both high and low affinity binding sites were identified with the dissociation constants (Kd) of 4.92 nM and 83.8 nM, respectively. However, only the high affinity site was identified with Kd of 3.96 nM with microsomal membranes. Benzodiazepine binding sites appear to include at least two subpopulations of receptors, one with high affinity and another with low affinity binding site.  相似文献   

5.
Some opiates with morphinan- and benzomorphan-structures possess affinities for neuroleptic receptors as revealed by their abilities to compete with 3H-spiroperidol for common binding sites in rat striatum in vitro (IC50 in the range between 10?6 and 10?5M). The binding of these opiates to neuroleptic receptors appears to be of pharmacological significance, since in vivo studies in mice revealed a small but significant displacement of spiroperidol by high doses of the opiate antagonist levallorphan from specific binding sites in the striatum. In addition, there exists some correlation between the ability of opiates to bind to neuroleptic receptor sites in vitro and their potency to evoke “bizarre behavior” in rats in vivo. In contrast, a wide variety of other opiates having morphine-, morphinone- or oripavine-structure showed no affinity for neuroleptic binding sites in vitro (IC50 greater than 10?4 M). Of the opioid peptides (methionine-enkephalin, leucine-enkephalin and β-endorphin) none has an affinity for neuroleptic binding sites. A variety of other peptides were also investigated but did not interfere with spiroperidol binding. Only ACTH showed a moderate affinity for neuroleptic binding sites.  相似文献   

6.
We have investigated the interaction of VIP and secretin with two human lung carcinoma cell lines in cultures, SW-900 and Calu-1. 125I-labeled VIP binds to and is inactivated by SW-900 and Calu-1 cells in a time- and temperature-dependent manner. The rates of binding and of inactivation were higher at 30°C than at 15°C. At equilibrium, native VIP competitively inhibited the binding of 125I-VIP in the 10?10?10?7M range, half-maximal inhibition being observed at 1.2 nM in SW-900 cells and at 1.1 nM VIP in Calu-1 cells. Scatchard analysis indicated two classes of binding sites with similar characteristics in both cell lines. SW-900 cells have 27 600 sites with a high affinity (Kd = 0.34 nM) and 1062 000 sites with a low affinity (Kd = 61.4 nM). Calu-1 cells have 36 300 sites with a high affinity (Kd = 0.33 nM) and 1148 000 sites with a low affinity (Kd = 78.6 nM). Secretin inhibited tracer binding but with a 5000 times lower potency than native VIP in both cell lines.  相似文献   

7.
High affinity and saturable binding sites for [3H] imipramine have been demonstrated on human platelet membranes. These binding sites appear to be specific for tricyclic antidepressants and their pharmacologically-active metabolites. In contrast, inactive tricyclic compounds such as the parent iminodibenzyl and iminostilbenes do not inhibit [3H] imipramine binding. The binding of [3H] imipramine to human platelets is of high affinity (Kd ? 1.4nM), saturable (Bmax ? 625 fmols/mg prot), and sensitive to proteolytic degradation. The effects of various drugs and neurotransmitter agonists and antagonists suggests that these binding sites are pharmacologically distinct from the previously reported binding of tricyclic antidepressants to alpha-adrenergic, muscarinic-cholinergic, and histaminergic receptors. The binding characteristics of [3H] imipramine to platelets is similar to that in rat and human brain and may thus serve as a useful model in elucidating the pharmacological and physiological significance of these binding sites.  相似文献   

8.
Flufenamate, a non-steroidal anti-inflammatory drug, is a powerful inhibitor of anion transport in the human erythrocyte (I50 = 6·10?7M). The concentration dependence of the binding to ghosts reveals two saturable components. [14C]Flufenamate binds with high affinity (Kd1 = 1.2·10?7M) to 8.5·105 sites per cell (the same value as the number of band 3 protein per cell); it also binds, with lower affinity (Kd2 = 10?4M) to a second set of sites (4.6·107 per cell). Pretreatment of cells with 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS), a specific inhibitor of anion transport, prevents [14C]flufenamate binding only to high affinity sites. These results suggest that high affinity sites are located on the band 3 protein involved in anion transport. Extracellular chymotrypsin and pronase at low concentration cleave the 95 kDa band 3 into 60 kDa and 35 kDa fragments without affecting either anion transport or [14C]flufenamate binding. Splitting by trypsin at the inner membrane surface of the 60 kDa chymotryptic fragment into 17 kDa transmembrane fragment and 40 kDa water-soluble fragment does not affect [14C]flufenamate binding. In contrast degradation at the outer membrane surface of the 35 kDa fragment by high concentration of pronase or papain decreases both anion transport capacity and number of high affinity binding sites for [14C]flufenamate. Thus it appears that 35 kDa peptide is necessary for both anion transport and binding of the inhibitors and that the binding site is located in the membrane-associated domain of the band 3 protein.  相似文献   

9.
Active in both binding and biological assays, morphiceptin (NH2 Tyr-Pro-Phe-Pro-CONH2), a potent opioid peptide derivative of β-casamorphine, binds specifically and selectively to mu or morphine-type receptors with little affinity for delta sites. Displacement studies of a variety of 3H-labeled opiates and enkephalins show biphasic curves. Naloxazone, which blocks irreversibly and selectively high affinity opiate and enkephalin binding, abolishes morphiceptin's inhibition of binding at low concentrations, suggesting that the high affinity binding of enkephalins and opiates represents a mu or morphine-type receptor. Unlike the reversible antagonist naloxone, naloxazone treatment invivo inhibits for over 24 hours the analgesic activity of morphiceptin like it inhibits morphine, β-endorphin and enkephalin analgesia. Together, these studies imply that opiates and enkephalins bind with highest affinity to a mu receptor which mediates their analgesic activity. The 3H-D-ala2-D-leu5-enkephalin binding remaining after naloxazone treatment, representing a lower affinity site (KD 4 nM), is quite insensitive to morphiceptin inhibition and has the characteristics of a delta receptor. However, the 3H-dihydromorphine binding present after naloxazone treatment, which also represents a lower affinity site (KD 6 nM), is far more sensitive to both morphine and morphiceptin and may represent a second morphine-like, or mu, receptor.  相似文献   

10.
The protein neurotoxin II from the venom of the scorpion Androctonusaustralis Hector was labeled with 125I by the lactoperoxidase method to a specific radioactivity of about 100 μCi/μg without loss of biological activity. The labeled neurotoxin binds specifically to a single class of non intereacting binding sites of high affinity (KD = 0.3 – 0.6 nM) and low capacity (4000 – 8000 sites/cell) to electrically excitable neuroblastoma cells. Relation of these sites to the action potential Na+ channel is derived from identical concentration dependence of scorpion toxin binding and increase in duration and amplitude of action potential. The protein neurotoxin II from the sea anemone Anemona sulcata also affects the closing of the action potential Na+ ionophore in nerve axons. The unlabelled sea anemone toxin modifies 125I-labeled scorpion toxin II binding to neuroblastoma cells by increasing the apparent KD for labeled scorpion toxin without modification of the number of binding sites. It is concluded that both Androctonus scorpion toxin II and Anemona sea anemone toxin II interact competitively with a regulatory component of the action potential Na+ channel.  相似文献   

11.
The synthetic androgen methyltrienolone is superior to testosterone and androstenedione for the measurement of androgen receptor in tissues where the native ligands are metabolized into inactive derivatives. [3H]Methyltrienolone binds with a high affinity to androgen receptor in cytosol prepared from male rat livers, as the Scatchard analysis revealed that the Kd value was 3.3 · 10?8 M and the number of binding sites was 35.5 fmol/mg protein. Since methyltrienolone also binds glucocorticoid receptor which exists in rat liver, the apparent binding of androgen receptor is faulty when measured in the presence of glucocorticoid receptor. The binding of methyltrienolone to glucocorticoid receptor can be blocked by the presence of a 100-fold molar excess of unlabeled synthetic glucocorticoid, triamcinolone acetonide, without interfering in its binding to androgen receptor, because triamcinolone does not bind to androgen receptor. Triamcinolone-blocked cytosol exhibited that the Kd value was 2.5 · 10?8 M and the number of binding sites was 26.3 fmol/mg protein, indicating a reduction to 34 of that in the untreated cytosol. The profile of glycerol gradient centrifiguration indicated that [3H]methyltriemolone-bound receptor migrated in the 8–9 S region in both untreated and triamcinolone-blocked cytosols, but the 8–9 S peak in triamcinolone-blocked cytosol was reduced to about 34 of that of untreated cytosol.  相似文献   

12.
[3H]Flunitrazepam was used to characterize benzodiazepine binding sites in human brain. The benzodiazepine binding sites exhibited high affinity, pharmacological specificity and saturability in their binding of [3H]flunitrazepam. The dissociation constant (KD) of [3H]flunitrazepam binding was determined by three different methods and found to be in the range of 2–3 nM. The potency of several benzodiazepine analogs to inhibit specific [3H]-flunitrazepam binding invitro correlated well with their potency in several invivo human and animal tests. The density of [3H]-flunitrazepam binding sites was highest in the cerebrocortical and rhinencephalic areas, intermediate in the cerebellum, and lowest in the brain stem and commissural tracts.  相似文献   

13.
Cells resistant to Clostridium perfringens enterotoxin were selected from cultures of highly sensitive Vero (African green monkey kidney) cells. Studies were done with the sensitive and resistant cells to determine the relationship between binding and biological activity. Binding studies using 125I-enterotoxin revealed the apparent existence of high and low affinity binding sites for the enterotoxin on both cell types. The binding site density on resistant cells was found to be 110 that of sensitive cells. It was found that, even with high doses of enterotoxin, only partial affect upon DNA synthesis, membrane permeability, and plating efficiency was noted in resistant cells. It is concluded that without specific binding there is little or no ability of the enterotoxin to effect biological activity in cells.  相似文献   

14.
Anomalies of the binding of 3Hspiperone to rat cerebral membranes have been examined. By employing a very low ligand concentration (~ 25 pM 3Hspiperone) we have demonstrated that even within the corpus striatum, 3Hspiperone appears to bind to multiple sites and that dopaminergic and serotonergic agents can selectively inhibit from these sites. In the corpus striatum, 75–80% of the 3Hspiperone specific binding can be inhibited with high affinity by dopaminergic drugs while some 20–30% is inhibited with high affinity by serotonergic compounds. The two 3Hspiperone sites, which we have shown to have affinities of 31 and 325 pM, may therefore represent dopaminergic and serotonergic sites. At higher concentrations of 3Hspiperone, however, the picture may be complicated by a further low affinity site. The great selectivity shown by dopaminergic agonists for the two 3Hspiperone sites explains the ‘flattened’ displacement curves reported for 3Hspiperone/agonist interactions. As dopaminergic agents show the greater affinity for the high affinity 3Hspiperone site, it is tempting to speculate that this site has the greatest association with the dopamine receptor.  相似文献   

15.
After removal of calcium ions bound to the high affinity sites the sarcoplasmic reticulum calcium pump can be phosphorylated by inorganic phosphate. The intrinsic fluorescence of the protein is used to follow conformational changes of the pump and an intensity change can be observed upon addition of phosphate. This effect is activated by internal calcium (K12 = 10 mM) and inhibited by external calcium (K12 = 0.4 μM) and the apparent affinity for phosphate is high (0.2 mM). We conclude that the change observed is linked to the formation of the gradient-dependent phosphorylated intermediate. It is compared with previous results concerning the enzymatic cycle of the pump.  相似文献   

16.
3H-nicotine binding was performed on intact and solubilized rat brain membranes as well as membranes from the electric organ of the Torpedo fish. The Kd for binding to intact and solubilized rat brain membranes was 5.6 × 10?9 M and 1.1 × 10?8M respectively, and the binding capacity 2.0 × 10?14 and 3.0 × 10?13 moles /mg protein respectively. The Kd for Torpedo membranes was 3.1 × 10?7M and the binding capacity 6.8 × 10?13 moles/mg protein. The binding was stereospecific with the affinity of the (?)-nicotine being about 8 times greater than the (+)-nicotine with all three preparations. The relative affinity for the nicotine binding site of nicotinic cholinergic drugs was considerably less in rat brain than in Torpedo membranes, where the sites are mainly cholinergic. A comparison was made of the ability of a variety of cholinergic drugs and nicotine derivatives to compete with 3H-nicotine binding and their relative pharmacologic potency to produce or inhibit a characteristic prostration syndrome caused by (?)-nicotine administered intraventricularly to rats. From such studies it was concluded that nicotine, in part, may be interacting at noncholinergic sites in rat brain.  相似文献   

17.
Three novel mercury derivatives bearing different electronic charges have been synthesized and used to prepare useful heavy atom derivatives of crystals of glycogen phosphorylase a. While exhibiting some common binding sites on the exterior of the molecule, their internal binding sites are determined primarily by their charge as predicted. Their ease of preparation and general applicability makes them useful candidates for the preparation of heavy atom derivatives of any protein crystals in X-ray crystallographic studies.  相似文献   

18.
D. discoideum contains kinetically distinguishable cell surface cAMP binding sites. One class, S, is slowly dissociating and has high affinity for cAMP (Kd = 15 nM, t12 = 15 s). A second class is fast dissociating (t12 about 1 s) and is composed of high affinity binding sites H (Kd ≈ 60 nM), and low affinity binding sites L (Kd = ≈ 450 nM) which interconvert during the binding reaction. Guanine nucleotides affect these three binding types in membranes prepared by shearing D.discoideum cells through Nucleopore filters. The affinity of S for cAMP is reduced by guanine nucleotides from 13 nM to 25 nM, and the number of S-sites is reduced about 50%. The number of fast dissociating sites is not altered by guanine nucleotides, but these sites are mainly in the low affinity state. Half-maximal effects are obtained at about 1 μM GTP, 2 μM GDP and 10 μM Gpp(NH)p(guanyl-5′-yl-imidodiphosphate); ATP and ADP are without effect up to 1 mM. These results indicate that D.discoideum cells have a functionally active guanine nucleotide binding protein involved in the transduction of extracellular cAMP signals via cell surface cAMP receptors.  相似文献   

19.
The binding sites for the lectins wheat germ agglutinin, Ricinus communis agglutinin and concanavalin A on mouse neuroblastoma cell membranes were identified using SDS-gel electrophoresis in combination with fluorescent lectins. Ricinus communis agglutinin and wheat germ agglutinin were found to bind almost exclusively to a single polypeptide with an apparent molecular weight of 30 000. Concanavalin A labeled over 20 different polypeptides, most with molecular weights greater than 50 000. However, when the neuroblastoma cells were treated with concanavalin A so as to internalize all the concanavalin A binding sites visible at the level of the fluorescent microscope and the purified plasma membranes analyzed for their concanavalin A binding polypeptides, only four of the 20 glycopolypeptides were missing or significantly reduced in amount. Thus, these four high molecular weight concanavalin A-binding polypeptides appear to be the major cell surface receptors for concanavalin A. Binding studies with iodinated concanavalin A indicated that these polypeptides represented the high affinity concanavalin A binding sites Kd = 2 · 10?7M). Low affinity concanavalin A binding sites were present on the cell surface after internalization of high affinity concanavalin A binding sites.  相似文献   

20.
The binding characteristics of the β-adrenergic antagonist, [3H]dihydroalprenolol, to hamster white adipocyte membranes were studied. This binding occurred at two classes of sites, one having high affinity (Kd = 1.6±1.3 nM) but low capacity (32±17 fmol/mg membrane protein) and one having low affinity but high binding capacity. While the binding at the high-affinity sites was competitively and stereoselectively displaced by both β-antagonists and β-agonists, competition at the low-affinity sites occurred only with β-antagonists and was non-stereoselective. Thus, the β-agonist (?)-isoproterenol was further used to define nonspecific binding. Under these conditions, saturation studies showed a single class of high-affinity (Kd = 1.6±0.5 nM) binding sites with a binding capacity of 53 ± 13 fmol/mg membrane protein (corresponding to 4000 ± 980 sites per cell), and independent kinetic analysis provided a Kd value of 1.9 nM. Competition experiments showed that these binding sites had the characteristics of a β1-receptor subtype, yielding Kd values in good agreement with the Kact and the Ki values found for agonist-stimulation and for antagonist-inhibition of adenylate cyclase in membranes and of cyclic AMP accumulation and lipolysis in intact cells. Furthermore, the ability of β-agonists to compete with this binding was severely depressed by p[NH]ppG. These results thus support the contention that the specific [3H]dihydroalprenolol binding sites defined as the binding displaceable by (?)-isoproterenol represent the physiologically relevant β-adrenergic receptors of hamster white adipocytes. Finally, studies of the lipolytic response of these cells to (?)-norepinephrine showed that the inhibitory effect of the α2-component of this catecholamine was apparent only when the effects of endogenous adenosine were suppressed, a result which argues against an important regulatory role for the α2-receptors in the adrenergic control of lipolysis in hamster white adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号