首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variegated tobacco leaves, white on one side of the midrib andgreen on the other, were detached from the stem and incubatedunder water stress or turgid conditions for 4 days to determineany changes in the levels of free amino acids. Drastic changes in the free amino acid composition occurredin the green tissue during the water stress period, but onlyvery small changes in the white tissue. During that time, themost striking difference between the two tissues was the largeamount of proline accumulated in the green tissue, but not inthe white. An exogenous supply of sucrose increased the prolinecontent in both tissues during water stress. An exogenous supplyof glutamic acid increased the proline and asparagine contentsin the green tissue, but it increased only the asparagine contentin the white tissue during water stress. (Received May 4, 1982; Accepted August 12, 1982)  相似文献   

2.
Pearl millet, Pennisetum glaucum , is capable of adapting to severely dry environmental conditions. In order to elucidate the mechanism of adaptation to highly dehydrated conditions, we selected both tolerant (IP8210) and susceptible (IP8949) accessions from a total of 15 pearl millet accessions and characterized their morphological and physiological responses to severe drought stress. When these selected accessions were stressed with a severe drought treatment, the leaves of IP8210 exhibited upright folding, a response that effectively reduces the evaporative surface area of the canopy. On the contrary, the leaves of IP8949 exhibited wilting and did not appear to adapt to the drought stress. In comparison with IP8949, the capacity of osmotic adjustment (OA) was greater in both younger leaves and stems of IP8210, while their decrease in relative water content was different. IP8210 accumulated higher concentrations of NO3 than IP8949 in response to drought stress. In addition to inorganic solutes, several organic components such as sucrose, glucose, quaternary ammonium compounds, and amino acids including proline were also accumulated. IP8210 tended to accumulate more amino acids, typically due to the accumulation of asparagine and proline, while IP8949 accumulated more soluble sugars. While it is possible that K+ and NO3 were the major components contributing to osmotic regulations, sugars and amino acids might also function as a cytoprotectant, in addition to their role as osmoprotectants. Collectively, these results demonstrate that the morphological adaptation of leaf folding, OA in both the younger leaves and the stem, and the accumulation of NO3 and amino acids during earlier stress period contribute to superior drought tolerance that was exhibited in IP8210 of pearl millet.  相似文献   

3.
The present study analyses changes in nitrogen compounds, amino acid composition, and glutamate metabolism in the resurrection plant Sporobolus stapfianus during dehydration stress. Results showed that older leaves (OL) were desiccation-sensitive whereas younger leaves (YL) were desiccation-tolerant. OL lost their soluble protein more rapidly, and to a larger extent than YL. Enzymes of primary nitrogen assimilation were affected by desiccation and the decrease in the glutamine synthetase (GS, EC 6.3.1.2) and ferredoxin-dependent GOGAT (Fd-GOGAT, EC 1.4.7.1) activities was higher in OL than in YL, thus suggesting higher sensibility to dehydration. Moreover, YL showed higher total GS enzyme activity at the end of the dehydration stress and was shown to maintain high chloroplastic GS protein content during the entire stress period. Free amino acid content increased in both YL and OL between 88% and 6% relative water content. Interestingly, OL and YL did not accumulate the same amino acids. OL accumulated large amounts of proline and gamma-aminobutyrate whereas YL preferentially accumulated asparagine and arginine. It is concluded (i) that modifications in the nitrogen and amino acid metabolism during dehydration stress were different depending on leaf development and (ii) that proline and gamma-aminobutyrate accumulation in S. stapfianus leaves were not essential for the acquisition of desiccation tolerance. On the contrary, the accumulation of large amounts of asparagine and arginine in the YL during dehydration could be important and serve as essential nitrogen and carbon reservoirs useful during rehydration. In this context, the role of GS for asparagine accumulation in YL is discussed.  相似文献   

4.
The absorption of nitrate, protein metabolism and the source of nitrogen for proline synthesis were studied in soybean ( Glycine max L. cv. Akisengoku) with 15N tracer technique under water stress conditions. The absorption of nitrate was sensitive to water stress and the flow of nitrate into the leaves completely ceased under severe stress conditions. Net protein loss from the water-stressed leaves was attributable to both a decrease in synthetic activity and a stimulation of protein degradation. Proline and asparagine accumulated extensively in the severely water-stressed plant tissues, especially in the younger green leaves. Fifty four % of the loss of leaf protein-15N during the stress period was balanced by a gain in 15N in the free amino acids, 41% being found in proline and asparagine. The increase in 15N content of the free proline was 3 times greater than the decrease in 15N content of the protein-bound proline in the leaf. The results indicate that the accumulation of proline in response to water stress was caused by enhanced synthesis and that the nitrogen source for this proline is the leaf protein. The possible association of these findings with stress tolerance is discussed.  相似文献   

5.
The physiological responses and adaptive strategies of Populus euphratica Oliv.(arbor species),Tamarix ramosissima Ldb.(bush species),and Apocynum venetum L.(herb species)to variations in water and salinity stress were studied in the hyper-arid environment of the Tarim River in China.The groundwater table,the saline content of the groundwater,as well as the content of free proline,soluble sugars,plant endogenous hormones (abscisic acid (ABA),and cytokinins (CTK))of the leaves of the three species were monitored and analyzed at the lower reaches of the Tarim River in the study area where five transects were fixed at 100 m intervals along a vertical sampling line before and after water release.Saline stress dramatically increased soluble sugar concentration of the three species.Differences in sugar accumulation were determined among the species at different transects.The free proline concentration of the leaves of T.ramosissima and P.euphratica showed a proportional decrease with various degrees of elevation of the groundwater table after water release.There was a least correlation between the soluble sugars and proline stimulation in T.ramosissima.It was strongly suggested that T.ramosissima developed a different strategy to accumulate organic solutes to adapt to the stress environment.The soluble sugars and proline accumulation responded to the changes of groundwater table independently:the former occurred under salt stress,whereas the latter was more significant under drought stress.The concentration and the increase in concentration of ABA and CTK involved in stress resistance of the three species were also determined.This increase in the hormone concentration in P.euphratica was different from that of the other two species.Expressed as a function of increase of ABA concentration in leaves,A.venetum and T.ramosissima showed a different solute accumulation in response to groundwater table.There was a significant correlation between ABA accumulation and A [proline] in A.venetum as well as between ABA accumulation and △ [sugar] in T.ramosissima.  相似文献   

6.
The ameliorative effect of salicylic acid (SA: 0.5 mM) on sunflower (Helianthus annuus L.) under Cu stress (5 mg l−1) was studied. Excess Cu reduced the fresh and dry weights of different organs (roots, stems and leaves) and photosynthetic pigments (chlorophyll a, b and carotenoids) in four-week-old plants. There was a considerable increase in Chl a/b ratio and lipid peroxidation in both the roots and leaves of plants under excess Cu. Soluble sugars and free amino acids in the roots also decreased under Cu stress. However, soluble sugars in the leaves, free amino acids in the stems and leaves, and proline content in all plant organs increased in response to Cu toxicity. Salicylic acid (SA) significantly reduced the Chl a/b ratio and the level of lipid peroxidation in Cu-stressed plants. Under excess Cu, a higher accumulation of soluble sugars, soluble proteins and free amino acids including proline occurred in plants treated with 0.5 mM SA. Exogenous application of SA appeared to induce an adaptive response to Cu toxicity including the accumulation of organic solutes leading to protective reactions to the photosynthetic pigments and a reduction in membrane damage in sunflower.  相似文献   

7.
Proline is emerging as a critical component of drought tolerance and fine tuning of its metabolism under stress affects the plants sensitivity and response to stress. Thus the study was carried out to analyse the effect of water deficit on the proline content and principal enzymes involved in its synthesis (Δ1-pyrolline-carboxylate synthetase) and catabolism (proline dehydrogenase) at different developmental stages and in different organs (roots, nodules, leaves, pod wall, and seeds) of two chickpea (Cicer arietinum L.) cultivars differing in drought tolerance (drought tolerant ICC4958 and drought sensitive ILC3279). It was observed that increased Δ1-pyrolline-carboxylate synthetase activity under moderate stress in roots and nodules of ICC4958 caused an increase in proline content during initiation of reproductive development whereas increased proline dehydrogenase activity in nodules and leaves at this period helped to maintain reducing power and energy supply in tissues and proper seed development as seed biomass increased consistently up to maturity. On the other hand, roots and nodules of ILC3279 responded to stress by increasing proline content after the developmental phase of reproductive organs was over (near maturity) which negatively affected the response of pod wall to stress. Concurrent increase in activities of Δ1-pyrolline-carboxylate synthetase and proline dehydrogenase in pod wall of ILC3279 aggravated the oxidative stress and affected seed development as seed biomass initially increased rapidly under stress but was unaffected near maturity.  相似文献   

8.
Plant responses to water deficit occur in a complex framework of organ interactions, but few studies focus on the effect of drought stress on all organs in a whole-plant. The effects of repeated dehydration and rehydration (DH) on physiological and biochemical responses in various organs of Periploca sepium Bunge (P. sepium) were investigated. The leaf relative water content decreased significantly during drought, but recovered and showed an increase when compared to well-watered control plants. The malondialdehyde (MDA) content increased in mature and old leaves, but decreased in young leaves, new stems and fine roots during drought, indicating that the young and vigorous tissues of a whole-plant are protected preferentially from the oxidative stress. Among all organs, the fine roots showed the highest levels of proline, total free amino acids (TFAA) and Na+, while the leaves showed the highest levels of total soluble sugars (TSS), soluble proteins (SP), Ca2+ and Mg2+. The response to DH differed in different organs, both in magnitude and in the type of solutes involved. Drought stress increased the contents of proline, TFAA, TSS, SP and K+ in all organs of P. sepium plants, while the accumulation amounts were obviously different among the organs. The storage starch in stems and roots plays an important role in providing carbohydrates for growth. Changes in Na+, Ca2+ and Mg2+ under DH presented a high degree of organ specificity. Our data indicates that response strategies are different between different organs; therefore, evidence the needs to integrate all the information in order to better understand plant tolerance mechanisms.  相似文献   

9.
Photosynthetic carbohydrate content in Setaria sphacelata var. splendida under rapidly and slowly induced water deficit and its contribution to osmotic adjustment were studied. In short-term stress experiments, a decrease in the total content of sucrose (Su) and starch (St) was observed in leaf discs submitted to stress. An increase in the ratio between free hexoses and sucrose was found in stressed leaves, but no significant differences were found in the amount of free hexoses nor in the ratio between soluble and insoluble sugars. In long-term stress experiments, a higher amount of soluble sugars and a lower amount of starch were found in stressed leaves, when compared to the control. The ratios of free hexoses to sucrose and of soluble to insoluble sugars were also higher in stressed leaves. The contribution of the accumulation of soluble sugars to osmotic adjustment was absent in rapidly stressed leaves and was of minor importance in slowly stressed leaves.  相似文献   

10.
Water stress is one of the main abiotic factors that reduces plant growth, mainly due to high evaporative demand and low water availability. In order to evaluate the effects of drought stress on certain morphological and physiological characteristics of two canola cultivars, we conducted a factorial experiment based on a completely randomized design. The findings show that drought stress exacerbations result in the plant's response to stress due to increased canola resistance caused by changes in plant pigments, proline, catalase, ascorbate peroxidase, peroxidase, superoxide dismutase and malondialdehyde, glucose, galactose, rhamnose and xylose. These in turn ultimately influence the morphological characteristics of canola. Drought stress reduces the concentration of carotenoids, chlorophyll a, chlorophyll b, total chlorophylls; however, glucose, galactose, rhamnose, xylose, proline, catalase, ascorbate peroxidase, peroxidase, superoxide dismutase, malondialdehyde (in leaves and roots) and the chlorophyll a and b ratios were increased. Reduction of plant height, stem height, root length, fresh and dry weight of canola treated with 300 g/l PEG compared to non‐treatment were 0.264, 0.236, 0.394, 0.183 and 0.395, respectively. From the two canola cultivars, the morphological characteristics of the NIMA increased compared to the Ks7 cultivar. Interaction effects of cultivar and drought stress showed that NIMA cultivar without treatment had the highest number of morphological characteristics such as carotenoid concentration, chlorophyll a, chlorophyll b, total chlorophylls a and b, whereas the cultivar with 300 g/l PEG (drought stress) had the highest amount of proline, malondialdehyde, soluble sugars and enzymes in leaves and roots. Increasing activity of oxidative enzymes and soluble sugars in canola under drought stress could be a sign of their relative tolerance to drought stress.  相似文献   

11.
Tomato [Solanum lycopersicum (formerly Lycopersicon esculentum) L. cv. Momotarou] plants were grown hydroponically inside the greenhouse of Hiroshima University, Japan. The adverse effects of potassium (K) deficiency stress on the source-sink relationship during the early reproductive period was examined by withdrawing K from the rooting medium for a period of 21 d. Fruits and stem were the major sink organs for the carbon assimilates from the source. A simple non-destructive micro-morphometric technique was used to measure growth of these organs. The effect of K deficiency was studied on the apparent photosynthesis (source activity), leaf area, partitioning (13)C, sugar concentration, K content, and fruit and stem diameters of the plant. Compared with the control, K deficiency treatment severely decreased biomass of all organs. The treatment also depressed leaf photosynthesis and transport of (13)C assimilates, but the impact of stress on these activities became evident only after fruit and stem diameter expansions were down-regulated. These results suggested that K deficiency diminished sink activity in tomato plants prior to its effect on the source activity because of a direct effect on the water status of the former. The lack of demand in growth led to the accumulation of sugars in leaves and concomitant fall in photosynthetic activity. Since accumulation of K and sugars in the fruit was not affected, low K levels of the growing medium might not have affected the fruit quality. The micro-morphometric technique can be used as a reliable tool for monitoring K deficiency during fruiting of tomato. K deficiency directly hindered assimilate partitioning, and the symptoms were considered more detrimental compared with P deficiency.  相似文献   

12.
Five proline analogues were tested for inhibition of the growth of mature barley (Hordeum vulgare L.) embryos in sterile culture. Inhibition by all analogues was relieved by proline. Inhibition by trans-4-hydroxy-L-proline was relieved by low amounts of proline. Twenty thousand mature embryos were dissected from M2 seeds after sodium azide mutagenesis. Four plants (Rothamsted 5201, 6102, 6901, 6902) were selected with good growth on 4 mM trans-4-hydroxyproline. Properties of mutant R5201 were studied in detail. Selfed progeny of R5201 were all resistant to trans-4-hydroxyproline and also to L-thiazolidine-4-carboxylic acid and trans-3-hydroxy-L-proline but not L-azetidine-2-carboxylic acid. The content of soluble proline in progeny of R5201 was higher in leaves by a factor of up to six-fold. Proline content was measured in the soluble fraction of the terminal 20 mm of 4 d old plants subjected to severe water stress in 40% w/v polyethylene glycol. Leaves of the mutant contained more proline initially and accumulated proline morer rapidly than the parental leaves. As mutant leaves were larger and lost water more rapidly the greater increase in proline may have been caused by more severe water stress. Resistance to trans-4-hydroxyproline in R5201 was due to a single partially dominant nuclear gene.Abbreviations AZC L-azetidine-2-carboxylic acid - HYP trans-4-hydroxy-L-proline - ORN L-ornithine - CIT L-citrulline  相似文献   

13.
Amino acids and sugars are probably the most commonly measured solutes in plant fluids and tissue extracts. Chromatographic techniques used for the measurement of such solutes require complex derivatization procedures, analysis times are long and separate analyses are required for sugars and amino acids. Two methods were developed for the analysis of underivatized sugars and amino acids by capillary electrophoresis (CE). Separation of a range of sugars and amino acids was achieved in under 30 min, with good reproducibility and linearity. In general, there was close agreement between amino acid analyses by CE and HPLC with post-column derivatization. An alternative, more rapid method was optimized for the common neutral sugars. Separation of a mixture of fructose, glucose, sucrose, and fucose (internal standard) was achieved in less than 5 min. How the source of N applied (nitrate or ammonium) and its concentration (8.0 or 0.5 mM) affects the amino acid and sugar composition of leaves from Banksia grandis Willd. and Hakea prostrata R. Br. was investigated. The amino acid pool of Banksia and Hakea were dominated by seven amino acids (aspartic acid, glutamic acid, asparagine, glutamine, serine, proline, and arginine). Of these, asparagaine and glutamine dominated at low N-supply, whereas at high N-supply the concentration of arginine increased and dominated amino-N. Plants grown with nitrate had a greater concentration of proline relative to plants with ammonium. In Banksia the concentration of amides was greatest and arginine least with a nitrate N-source, whereas in Hakea amides were least and arginine greatest with nitrate N-source. The concentration of sugars was greater in Banksia than Hakea and in both species at greater N-supply.  相似文献   

14.
The free proline levels and activities of ornithine aminotransferase (EC 2.6.1.13) and proline oxidase (EC 1.5.2.2), two of the enzymes involved in proline metabolism were studied during the induction of water stress in a drought susceptible (M-4) and a drought tolerant (S-1315) cultivar of cassava ( Manihot esculenta Crantz). Water stress induced by polyethylene glycol (MW 6000, osmotic potential — 1.65 MPa) caused a ca 25-fold increase in proline in young excised leaves of the susceptible cultivar (M-4) while the increase was about 9-fold in the tolerant cultivar (S-1315). The activity of ornithine aminotransferase (OAT), a key enzyme involved in the biosynthesis of proline, was found to increase 3-fold in water stressed leaves of M-4 and about 2-fold in those of S-1315. The activity of proline oxidase, which is involved in the degradation of proline to pyrroline-5-carboxylate, was reduced by 50% in M-4 and nearly 25% in S-1315 on water stress. Comparison of the kinetic properties of OAT showed that the enzyme from water-stressed leaves is more stable to heat inactivation compared to that of control. These results indicate that during water stress there are alterations in the metabolism of proline in cassava, and the extent of alteration varies between drought-susceptible and -tolerant cultivars.  相似文献   

15.
During leaf senescence and abscission, total nitrogen in leaves of mulberry ( Morus alba L. ev. Shin-ichinose) declined substantially whereas total nitrogen in buds, bark and stem wood increased markedly, suggesting translocation of nitrogen from senescent leaves in the autumn. After leaf abscission the winter buds and stems remained almost unchanged with respect to fresh and dry weight and total nitrogen until bud break in spring. In burst buds these parameters then increased drastically during the new growth while they decreased markedly in stems. Free arginine in the stem bark accumulated in parallel with the accumulation of total nitrogen in buds and stems in the autumn. Accumulation of proline in the wood, bark and buds also started in October but continued even after leaf-fall, increasing until mid-January (wood), mid-February (bark) and the new growth (buds). Prior to and in the early stage of bud break, proline in bark and wood decreased significantly and arginine in stem bark decreased slightly. Simultaneously, proline and arginine in the dormancy-releasing buds and asparagine, aspartic acid and glutamic acid in the buds and stems increased appreciably, suggesting that this increase in free amino acids was mainly derived from free amino acids (proline and arginine) stored in stems. The resulting marked decrease in total nitrogen and the drastic increase in asparagine in the stems and sprouting buds/new shoots were primarily due to a breakdown of protein stored in stems.  相似文献   

16.
The effect of water stress on the free amino acids in cotton leaves has been investigated. The water deficit, obtained by lowering of osmotic potential through the use of polyethylene glycol (PEG-600) as the osmotic agent, induces an accumulation of free amino acids.Significant modifications in the composition of this fraction are observed. The major differences from treated and untreated leaves are in the levels of γ-aminobutyric acid, asparagine, proline, and glutamic acid and its amide.  相似文献   

17.
盐胁迫下突变体和野生型叶片中的脯氨酸累积量均有显著的增加,野生型的增加幅度不及突变体。至96 h ,两者含量均下降,但突变体的脯氨酸含量仍高于野生型。100m mol/L的NaCl 胁迫72 h ,突变体叶片中可溶性糖的含量有显著的增加,增加量随盐浓度增加而降低。至96 h,各个盐浓度处理的突变体可溶性糖的含量基本恢复到其对照的水平;除100 mmol/L 盐胁迫处理组外,野生型叶片中可溶性糖含量均大幅度下降。盐胁迫下突变体和野生型叶片细胞可溶性蛋白组分有明显的差异。mRNA 差异显示结果表明,突变体有6 个差异性的cDNA 片段  相似文献   

18.
The ability of exogenous compatible solutes, such as proline, to counteract salt inhibitory effects was investigated in 2-year-old olive trees (Olea europaea L. cv. Chemlali) subjected to different saline water irrigation levels supplied or not with exogenous proline. Leaf water relations [relative water content (RWC), water potential], photosynthetic activity, leaf chlorophyll content, and starch contents were measured in young and old leaves. Salt ions (Na+, K+, and Ca2+), proline and soluble sugars contents were determined in leaf and root tissues. Supplementary proline significantly mitigated the adverse effects of salinity via the improvement of photosynthetic activity (Pn), RWC, chlorophyll and carotenoid, and starch contents. Pn of young leaves in the presence of 25 mM proline was at 1.18 and 1.38 times higher than the values recorded under moderate (SS1) and high salinity (SS2) treatments, respectively. Further, the proline supply seems to have a more important relaxing effect on the photosynthetic chain in young than in old leaves of salt-stressed olive plants. The differential pattern of proline content between young and old leaves suggests that there would be a difference between these tissues in distinguishing between the proline taken from the growing media and that produced as a result of salinity stress. Besides, the large reduction in Na+ accumulation in leaves and roots in the presence of proline could be due to its interference in osmotic adjustment process and/or its dilution by proline supply. Moreover, the lower accumulation of Na+ in proline-treated plants, compared to their corresponding salinity treatment, displayed the improved effect of proline on the ability of roots to exclude the salt ions from the xylem sap flowing to the shoot, and thus better growth rates.  相似文献   

19.
以抗热性较弱的黄瓜品种‘新泰密刺'为试材,在人工气候箱内采用营养液栽培法,研究了外源脯氨酸(Pro)预处理对高温胁迫下黄瓜幼苗叶片抗坏血酸-谷胱甘肽循环和光合荧光特性的影响.结果显示:(1)与清水处理相比,高温胁迫4 h和8 h时,Pro预处理黄瓜幼苗叶片单脱氢抗坏血酸还原酶(MDAR)活性、GSH(还原型谷胱甘肽)/GSSG(氧化型谷胱甘肽)比值及GSH含量显著升高;(2)在高温胁迫8 h时,Pro预处理幼苗的净光合速率(P_n)、气孔导度(G_s)及PSⅡ的最大光化学效率(F_v/F_m)、光化学淬灭系数(q_P)均显著升高,而蒸腾速率(T_r)和非光化学淬灭系数(NPQ)降低.研究表明,外源Pro预处理可显著提高高温胁迫下黄瓜幼苗叶片抗坏血酸-谷胱甘肽循环清除H_2O_2能力和叶片光合能力,有效缓解高温胁迫对黄瓜叶片抗氧化系统和光合系统的伤害,从而增强植株的耐热性.  相似文献   

20.
《Aquatic Botany》2001,69(2-4):195-208
The effects of NaCl-salinity on growth, free amino acid and sugar content and composition were assayed in roots, rhizomes and leaves of Phragmites australis (Cav.) Trin. ex Steud. Juvenile plants produced from freshwater clones, were cultured under greenhouse hydroponic conditions for 21 days. Relative growth rates were highest at a salinity level of 0 and 1.5‰, respectively, but decreased significantly at 10‰. All plants cultured at 35‰ salinity died. The osmolality in rhizomes and leaves increased with salinity. The total contents of free amino acids were highest in rhizomes>leaves>roots. In rhizomes, the amino acid content increased significantly up to four-fold from 0 to 10‰ salinity. This increase was caused by up to 200-fold increase of proline and 11-fold increase of glutamine at 10‰, whilst the share of asparagine and glutamate decreased. Leaves showed a similar response to salinity with increasing amino acid contents, and shares of proline and glutamine whereas roots did not react significantly. The contents of sucrose, glucose and fructose were highest in leaves>rhizomes>roots. In rhizomes of all three clones, the sugar contents increased up to 3.5-fold from 1.5 to 10‰ salinity level, but were lower at 1.5‰ versus the control (0‰). Sugar contents were lowest (roots) and highest (leaves) at 1.5‰ salinity. The sugar composition did not vary significantly except for leaves where the fraction of sucrose decreased with increasing salinity level at all three clones from 89.1 to 61.7% of total dissolved sugar (pooled data). The importance of free amino acids and sugars as osmolytes was similar in rhizomes and leaves (13–15% of total osmolality at 10‰). In rhizomes, free amino acids were more important as osmolyte than sugars, while the opposite was true for leaves. Proline contributed up to 2.7% to total osmolality. It is hypothesised that a strong proline accumulation indicates the exceeding of a critical salinity level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号