首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Since 1966 the domestic pig has served as the animal model in Malignant Hyperthermia (MH) research [1]. The use of genetically well-defined pigs rendered it possible to test the method for diagnosing MH-susceptibility of patients presented in the preceding paper. Thus, the effect of halothane on intracellular calcium movements was studied in Quin-2- and chlorotetracycline-loaded pig platelets. In 'Ca(2+)-free' suspensions the resting level of free cytosolic Ca2+ was about 60 nM. In contrast to the results with human platelets there were no significant differences between pig genotypes either in the absence or in the presence of external calcium. After addition of halothane, a mobilization of intracellular membrane-bound calcium can be observed. However, the calcium mobilization is not accompanied by a marked increase in fluorescence intensity of Quin-2-loaded platelets. Thus, in the absence of external calcium, halothane produces only a slight increase in free cytosolic Ca2+. Nevertheless, the calcium rises measured in platelets from affected animals were statistically significantly higher than those from normal subjects. However, in the presence of 1 mM external calcium, a rapid increase in free cytosolic calcium can be detected after halothane addition. This suggests that halothane causes a marked, dose-dependent increase in Ca2+ permeability of the plasma membrane. Compared to the control group, significantly enhanced calcium permeability was found, not only in homozygous positive pigs, but also in heterozygous animals.  相似文献   

2.
The purpose of this investigation was to examine the effects of the Ca2+ agonist BAY K 8644 and the Ca2+ antagonist nifedipine on halothane- and caffeine-induced twitch potentiation of mammalian skeletal muscle. Muscle fiber bundles were taken from normal Landrace pigs and exposed to BAY K 8644 (10 microM), nifedipine (1 microM), and low Ca2+ media administered alone and in combination with halothane (3%) or with increasing concentrations of caffeine (0.5-8.0 mM). Both BAY K 8644 and halothane potentiated twitches by approximately 80%; when they were administered in combination, twitch potentiation was nearly double that caused by either drug alone. In the presence of nifedipine, halothane increased twitches by less than 30%. Low Ca2+ significantly depressed twitches by approximately 25% but also inhibited halothane's inotropic effect. BAY K 8644 augmented caffeine potentiation but only at low caffeine concentrations (0.5-2.0 mM). Nifedipine and low Ca2+ failed to inhibit caffeine's inotropic effects. These results suggest that halothane potentiates twitches via a mechanism that involves or is influenced by extracellular Ca2+.  相似文献   

3.
To further define the possible involvement of sarcoplasmic reticulum calcium accumulation and release in the skeletal muscle disorder malignant hyperthermia (MH), we have examined various properties of sarcoplasmic reticulum fractions isolated from normal and MH-susceptible pig muscle. A sarcoplasmic reticulum preparation enriched in vesicles derived from the terminal cisternae, was further fractionated on discontinuous sucrose density gradients (Meissner, G. (1984) J. Biol. Chem. 259, 2365-2374). The resultant MH-susceptible and normal sarcoplasmic reticulum fractions, designated F0-F4, did not differ in yield, cholesterol and phospholipid content, or nitrendipine binding capacity. Calcium accumulation (0.27 mumol Ca/mg per min at 22 degrees C), Ca2+-ATPase activity (0.98 mumol Pi/mg per min at 22 degrees C), and calsequestrin content were also similar for MH-susceptible and normal sarcoplasmic reticulum fraction F3. To examine sarcoplasmic reticulum calcium release, fraction F3 vesicles were passively loaded with 45Ca (approx. 40 nmol Ca/mg), and rapidly diluted into a medium of defined Ca2+ concentration. Upon dilution into 1 microM Ca2+, the extent of Ca2+-dependent calcium release measured after 5 s was significantly greater for MH-susceptible than for normal sarcoplasmic reticulum, 65.9 +/- 2.8% vs. 47.7 +/- 3.9% of the loaded calcium, respectively. The C1/2 for Ca2+ stimulation of this calcium release (5 s value) from MH-susceptible sarcoplasmic reticulum also appeared to be shifted towards a higher Ca2+-sensitivity when compared to normal sarcoplasmic reticulum. Dantrolene had no effect on calcium release from fraction F3, however, halothane (0.1-0.5 mM) increased the extent of calcium release (5 s) similarly in both MH-susceptible and normal sarcoplasmic reticulum. Furthermore, Mg2+ was less effective at inhibiting, while ATP and caffeine were more effective in stimulating, this Ca2+-dependent release of calcium from MH-susceptible, when compared to normal sarcoplasmic reticulum. Our results demonstrate that while sarcoplasmic reticulum calcium-accumulation appears unaffected in MH, aspect(s) of the sarcoplasmic reticulum Ca2+-induced calcium release mechanism are altered. Although the role of the Ca2+-induced calcium release mechanism of sarcoplasmic reticulum in situ is not yet clear, our results suggest that an abnormality in the regulation of sarcoplasmic reticulum calcium release may play an important role in the MH syndrome.  相似文献   

4.
The effect of halothane on the regulation of blood platelet free cytosolic calcium was investigated in Quin-2-loaded cells from patients susceptible to Malignant Hyperthermia (MH) and healthy controls, respectively. The resting level of free cytosolic calcium was slightly, but statistically significantly, enhanced in platelets from patients (90 +/- 10 nM vs 110 +/- 35 nM). Halothane induced a dose-dependent, rapid Ca2+ release from intracellular stores both in normal and in MH derived cells, but the resulting increase in cytosolic calcium was significantly higher in the latter (2 mM halothane: [Ca2+]i = 117 +/- 12 nM vs 218 +/- 117 nM; 4 mM halothane: 225 +/- 35 nM vs. 417 +/- 201 nM). Whereas in platelets from healthy donors a complete reversibility of the halothane effect could be observed within 30-45 min, the cytosolic Ca2+ transients in platelets from patients were different from those in normals either in a higher initial peak or in a diminished decline velocity or in both. The basal Ca2+ permeability of the platelet plasma membrane was very low. Generally, halothane caused a dose-dependent increase in Ca2+ permeability. However, the influx of external calcium was significantly higher in platelets from patients than in controls (2 mM halothane: delta [Ca2+]i = 69 +/- 12 nM vs 135 +/- 63 nM; 4 mM halothane: 127 +/- 33 nM vs. 258 +/- 111 nM). Combining the results, the suggestion can be made that susceptibility to MH is characterized by a generalized membrane defect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
When compared to normal pig sarcoplasmic reticulum (SR), SR from malignant hyperthermia susceptible (MHS) porcine skeletal muscle has been shown to exhibit an increased rate of calcium release, as well as alterations in [3H]ryanodine-binding activity in the presence of microM Ca2+ (Mickelson et al., 1988, J. Biol. Chem. 263, 9310). In the present study, various stimulators (adenine nucleotides and caffeine) and inhibitors (ruthenium red and Mg2+) of the SR calcium release channel were examined for effects on MHS and normal SR [3H]ryanodine binding. The apparent affinity of the MHS SR receptor for ryanodine in the presence of 10 mM ATP (Kd = 6.0 nM) or 10 mM caffeine (Kd = 28 nM) was significantly greater than that of the normal SR (Kd = 8.5 and 65 nM in 10 mM ATP or caffeine, respectively), the Bmax (12-16 pmol/mg) was similar in all cases. The Ca2+(0.5) for inhibition of [3H]ryanodine binding in the presence of 5 mM AMPPNP (238 vs 74 microM for MHS and normal SR, respectively) and the Ca2+(0.5) for stimulation of [3H]ryanodine binding in the presence of 5 mM caffeine (0.049 vs 0.070 microM for MHS and normal SR, respectively) were also significantly different. Furthermore, in the presence of optimal Ca2+, MHS SR [3H]ryanodine binding was more sensitive to caffeine stimulation (C0.5 of 1.7 vs 3.4 mM) and was less sensitive to ruthenium red (C0.5 of 1.9 vs 1.2 microM) or Mg2+ inhibition (C0.5 of 0.34 vs 0.21 mM) than was normal SR. These results further support the hypothesis that differences in the ryanodine/receptor calcium release channel regulatory properties are responsible for the abnormal calcium releasing activity of MHS SR.  相似文献   

6.
Sarcolemmal properties implicated in the skeletal muscle disorder, malignant hyperthermia (MH), were examined using sarcolemma-membrane vesicles isolated from normal and MH-susceptible (MHS) porcine skeletal muscle. MHS and normal sarcolemma did not differ in the distribution of the major proteins, cholesterol or phospholipid content, vesicle size and sidedness, (Na+ + K+)-ATPase activity, ouabain binding, or adenylate cyclase activity (total and isoproterenol sensitivity). The regulation of the initial rates of MHS and normal sarcolemmal ATP-dependent calcium transport (calcium uptake after 1 min) by Ca2+ (K1/2 = 0.64-0.81 microM), calmodulin, and cAMP-dependent protein kinase were similar. However, when sarcolemmal calcium content was measured at either 2 or 20 min after the initiation of active calcium transport, a significant difference between MHS and normal sarcolemmal calcium uptake became apparent, with MHS sarcolemma accumulating approximately 25% less calcium than normal sarcolemma. Calcium transport by MHS and normal sarcolemma, at 2 or 20 min, had a similar calmodulin dependence (C1/2 = 150 nM), and was stimulated to a similar extent by cAMP-dependent protein kinase or calmodulin. Halothane inhibited MHS and normal sarcolemmal active calcium uptake in a similar fashion (half-maximal inhibition at 10 mM halothane), while dantrolene (30 microM) and nitrendipine (1 microM) had little effect on either MHS or normal sarcolemmal calcium transport. After 20 min of ATP-supported calcium uptake, 2 mM EGTA plus 10 microM sodium orthovanadate were added to initiate sarcolemmal calcium efflux. Following an initial rapid phase of calcium release, an extended slow phase of calcium efflux (k = 0.012 min-1) was similar for both MHS and normal sarcolemma vesicles. We conclude that although a number of sarcolemmal properties, including passive calcium permeability, are normal in MH, a small but significant defect in MHS sarcolemmal ATP-dependent calcium transport may contribute to the abnormal calcium homeostasis and altered contractile properties of MHS skeletal muscle.  相似文献   

7.
Preparing skeletal sarcoplasmic reticulum from both normal and malignant hyperthermia susceptible pigs, the effects of various drugs on the passive calcium permeability of these sarcoplasmic reticulum preparations were studied. It was found that, in the absence of halothane, the permeability of heavy sarcoplasmic reticulum prepared from malignant hyperthermia susceptible pigs was much higher than that of normal pigs. It was observed that halothane, at concentrations above 10 microM (well below anesthetic concentrations, which are on the order of 1 mM), increased the permeability of sarcoplasmic reticulum. The Hill coefficient of the effect of halothane ranged from 1.96 to 2.25, suggesting that some kind of cooperativity was involved in this reaction. The effects of caffeine were similar to those of halothane. Inhibitors, such as tetracaine and ruthenium red inhibited both the calcium permeability and the halothane-induced increment. The Hill coefficient of the effect of tetracaine was 1.75. The mode of inhibition suggests that tetracaine directly binds with the calcium channel to inhibit the calcium efflux. On the contrary, dantrolene did not affect the calcium permeability of the sarcoplasmic reticulum. However, it inhibited the halothane-induced and caffeine-induced increments of the permeability. The Hill coefficient of inhibition by dantrolene ranged from 2.3 to 3.9, suggesting that several molecules of dantrolene may interact cooperatively with one calcium release channel to inhibit the effect of halothane. These results suggest that dantrolene has a unique inhibitory action, which may be related to its efficacy in ameliorating the syndrome of malignant hyperthermia.  相似文献   

8.
Transverse tubule (TT) calcium transport and permeability were examined in the inherited skeletal muscle disorder malignant hyperthermia (MH). ATP-dependent calcium uptake by TT vesicles isolated from normal and MH-susceptible (MHS) pig muscle had a similar dependence on ionized Ca2+ concentration (K1/2 for Ca2+ of 0.21 +/- 0.04 and 0.25 +/- 0.05 microM for MHS and normal TT, respectively), as well as a similar Vmax (20.9 +/- 2.0 and 23.7 +/- 4.5 nmol Ca/mg protein/min for MHS and normal TT, respectively). Furthermore, the stimulation of calcium uptake by either calmodulin or cAMP-dependent protein kinase was similar in normal and MHS TT. Halothane concentrations greater than 2 mM inhibited calcium uptake by either normal or MHS TT to a similar extent (IC50 = 8 mM). Dantrolene (10 microM), nitrendipine (1 microM), and Bay K 8644 (1 microM) had no significant effect on either the initial rates of calcium uptake or maximal calcium accumulation of either MHS or normal TT vesicles. However, in the absence of any added agents, maximum calcium accumulation by MHS TT was significantly less than by normal TT (90 +/- 10 versus 130 +/- 9 nmol Ca/mg protein after 15 min of uptake). This difference was not due to an increased permeability of MHS TT to calcium, nor was it due to a difference in the sarcoplasmic reticulum contamination (less than 5%) of the MHS and normal preparations. Although our results indicate there is no significant defect in MHS TT calcium regulation, the diminished maximum calcium accumulation by MHS TT may contribute to the abnormal sarcoplasmic calcium homeostasis in skeletal muscle during an MH crisis.  相似文献   

9.
M Fill  E Stefani    T E Nelson 《Biophysical journal》1991,59(5):1085-1090
Single sarcoplasmic reticulum (SR) Ca2+ release channels were reconstituted from normal and malignant hyperthermic (MH) human skeletal muscle biopsies (2-5 g samples). Conduction, gating properties, and myoplasmic Ca2+ dependence of human SR Ca2+ release channels were similar to those in other species (rabbit, pig). The MH diagnostic procedure distinguishes three phenotypes (normal, MH-equivocal, and MH-susceptible) on the basis of muscle contracture sensitivity to caffeine and/or halothane. Single channel studies reveal that human MH muscles (both MH phenotypes) contain SR Ca2+ release channels with abnormally greater caffeine sensitivity. Muscles from MH-equivocal and MH-susceptible patients appear to contain channels with the same abnormality. Further, our data (n = 115, 21 channels, 11 patients) reveals that human MH muscles (both phenotypes) may contain two populations of SR Ca2+ release channels, possibly corresponding to normal and abnormal isoforms. Thus, whole cell phenotypic variation (MH-equivocal vs. MH-susceptible) arises in muscles containing channels with similar caffeine sensitivity suggesting that human MH does not arise from a single defect. These results have important ramifications concerning (a) correlation of functional and genetic MH studies, (b) identification of other, yet to be determined, factors which may influence MH expression, and (c) characterization of normal SR Ca2+ release channel function by exploring genetic channel defects.  相似文献   

10.
Caffeine has been reported to have a positive and (or) a negative inotropic effect on cardiac muscle. In this study, the force-frequency and postrest characteristics of rat atrium were studied in the presence of caffeine (1.0-10 mM) to see if the interval between beats affected the response of cardiac muscle to caffeine. When stimulation frequency was 0.5 or 2.0 Hz, there was a positive followed by a negative inotropic response with 1, 5, or 10 mM caffeine. Incomplete relaxation occurred under these circumstances, giving rise to contracture. At low frequency of stimulation (0.1 Hz) caffeine had only a negative inotropic effect, and this effect was greater with 1 mM caffeine than with 5 mM caffeine. In the absence of caffeine, when stimulation at 0.5 or 3 Hz was interrupted, a pause of 2-20 s resulted in potentiation. When caffeine was present (2.0 mM), postrest potentiation was severely attenuated, but the steady-state contraction amplitude within the range 0.5-3.0 Hz was not different. These results are consistent with the hypothesis that caffeine induces a leak of Ca2+ from the sarcoplasmic reticulum, and this Ca2+ is extruded from the cell, possibly by Na+/Ca2+ exchange. Sarcoplasmic reticular uptake of Ca2+ and the translocation to release sites appear not to be affected by caffeine within 1-5 mM concentrations.  相似文献   

11.
Myoplasmic free calcium transients delta [Ca2+] were monitored with the calcium indicators antipyrylazo III and fura-2 in voltage clamped cut frog skeletal muscle fibers, in the presence and absence of 0.5 mM caffeine. Without caffeine delta [Ca2+] began to decline within a few milliseconds of fiber repolarization for pulses of all durations. In caffeine delta [Ca2+] continued to rise for 10-60 ms after 10 or 20 ms depolarizing pulses, indicating that the release of calcium from the sarcoplasmic reticulum (SR) continued well after repolarization of transverse tubular (TT) membranes in the presence of caffeine. Caffeine also increased the peak amplitude of delta [Ca2+] for all pulses and slowed the decline of delta [Ca2+] after pulses of all durations. The rate of calcium release from the SR calculated from delta [Ca2+] showed that for 10 ms pulses in caffeine release did not turn off abruptly on repolarization but instead declined to zero with a time constant essentially the same as the time constant for inactivation of SR calcium release during depolarizing pulses in the presence or absence of caffeine. The observed loss of TT membrane potential control of SR calcium release in the presence of caffeine suggests the appearance of a significant component of cytosolic Ca2+-induced calcium release in caffeine.  相似文献   

12.
Muscle contraction stimulates glucose transport independent of insulin. Glucose uptake into muscle cells is positively related to skeletal muscle-specific glucose transporter (GLUT-4) expression. Therefore, our objective was to determine the effects of the contraction-mediated signals, calcium and AMP-activated protein kinase (AMPK), on glucose uptake and GLUT-4 expression under acute and chronic conditions. To accomplish this, we used pharmacological agents, cell culture, and pigs possessing genetic mutations for increased cytosolic calcium and constitutively active AMPK. In C2C12 myotubes, caffeine, a sarcoplasmic reticulum calcium-releasing agent, had a biphasic effect on GLUT-4 expression and glucose uptake. Low-concentration (1.25 to 2 mM) or short-term (4 h) caffeine treatment together with the AMPK activator, 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR), had an additive effect on GLUT-4 expression. However, high-concentration (2.5 to 5 mM) or long-term (4 to 30 h) caffeine treatment decreased AMPK-induced GLUT-4 expression without affecting cell viability. The negative effect of caffeine on AICAR-induced GLUT-4 expression was reduced by dantrolene, which desensitizes the ryanodine receptor. Consistent with cell culture data, increases in GLUT-4 mRNA and protein expression induced by AMPK were blunted in pigs possessing genetic mutations for both increased cytosolic calcium and constitutively active AMPK. Altogether, these data suggest that chronic exposure to elevated cytosolic calcium concentration blocks AMPK-induced GLUT-4 expression in skeletal muscle.  相似文献   

13.
A comparative study of mechanical and energetic parameters of superfused muscle strips from normal pigs and malignant hyperthermia susceptible (MHS) pigs has been conducted. Phosphorus nuclear magnetic resonance spectroscopy at 80.9 MHz and mechanical measurements were used to assess muscle metabolic state. At rest, biceps femoris biopsies of MHS pigs displayed reduced phosphocreatine level, higher inorganic phosphate, and a more acidic internal pH. In normal stimulated fibers, caffeine infusion (8 or 16 mM) induced twitch potentiation and contracture while twitch tension was reduced and contracture more pronounced in malignant fibers. In normal and malignant fibers, calcium ionophore A23187 produced effects similar to those of caffeine, with the exception of twitch potentiation, which was not observed. With caffeine or A23187, the ATP level remained constant throughout the rest-stimulation-recovery protocol for normal and malignant fibers but phosphocreatine dropped to undetectable levels upon stimulation of malignant fibers. In both treatments some heterogeneity in the resonances of inorganic phosphate was observed in malignant fibers together with a more severe acidosis which might play a role in the impairment of the excitation-contraction process.  相似文献   

14.
Strips of soleus (slow twitch, oxidative) and gracilis (fast-twitch, glycolytic) muscle were obtained from 27 anesthetized cats and mounted in organ baths filled with oxygenated Krebs-Ringer solution (37 degrees C). The responses to caffeine, halothane (1%), caffeine in the presence of halothane, and electrical stimulation in the presence of halothane were examined in the two fiber types. These responses were compared with those observed in paired strips of muscle that had been treated with verapamil (10 or 28 microM), a slow calcium (Ca2+) channel blocker, with zero Ca2+, or with zero Ca2+ where magnesium (3.7 mM Ca2+) was added to replace the Ca2+. Halothane-induced contractures in the soleus were blocked by verapamil and zero Ca2+. Caffeine-induced contractures and tetanic contractions were attenuated in zero Ca2+ and by verapamil in both fiber types. Halothane overcame verapamil-induced reductions of caffeine contractures and tetanic contractions in both fiber types. In contrast, halothane did not overcome zero Ca2+-induced reductions in caffeine contractures or tetanic contractions in either fiber type. Furthermore, the addition of Mg2+ to the zero Ca2+ did not restore the responses. The findings with verapamil indicate that in cat muscle, both halothane- and caffeine-induced contractures and tetanic contractions are dependent on the influx of extracellular Ca2+. This extracellular Ca2+ may enter through the slow Ca2+ channels. However, because halothane in combination with caffeine or electrical stimulation overcame the effects of verapamil, there may be other sites involved.  相似文献   

15.
Immunoreactive Calmodulin (CM) was measured in the supernatant fraction of homogenates of platelets obtained from humans, rats, guinea pigs and rabbits, using a commercial RIA kit. The levels (microgram/g wet weight of platelets) of immunoreactive CM were 6.8 +/- 0.5, 6.9 +/- 0.4, 8.6 +/- 1.8 and 9.7 +/- 3.1 (mean +/- SEM) for rat, human, rabbit and guinea pig, respectively. There was no statistically significant difference in values between these four species. The refractoriness of rat platelets to aggregate to certain agonists such as platelet activating factor (PAF) cannot be explained on differences in amount of immunoreactive CM.  相似文献   

16.
Previous studies demonstrated that lipid profiles of humans and pigs susceptible to malignant hyperthermia (MH) differ from those of normal humans and pigs. Lipid extraction techniques retaining in vivo lipid profiles most closely were used in the present study to determine if stimulation of lipolysis by the processes of homogenization or extraction might account for the reported differences in lipid profiles. No differences were observed among three genotypes of British Landrace pigs with respect to cholesterol levels, triglyceride levels, or total lipid phosphorus values of whole muscle (longissimus dorsi). Phospholipid distributions were the same for all three groups. Individual free fatty acids and fatty acids acylated to triglycerides were similar among the genotypes. These results do not support altered lipid profiles in vivo in MH-susceptible swine. Previously used homogenization and extraction procedures most likely affect the lipolytic activity to a different extent in muscle from MH-susceptible pigs and normal pigs.  相似文献   

17.
Membrane fluidity of red blood cells drawn from malignant hyperthermic pigs and humans was studied using spin-probes and electron paramagnetic resonance technique. The order parameter and rotational correlation time were determined with 12-doxylstearate and 16-doxylstearate, respectively. It was found that halothane decreased both parameters, but that the decrease of these parameters in subjects susceptible to malignant hyperthermia was much greater than that in normal subjects. The differences were most pronounced at 3 mM halothane. A possibility of using blood for a non-invasive screening for malignant hyperthermia is discussed.  相似文献   

18.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytoplasm, on ATP-dependent calcium transport in the plasma membrane vesicles of rat liver was investigated. (Ca2+-Mg2+)-ATPase activity in the liver plasma membranes was significantly increased by the presence of regucalcin (0.1-0.5 \sgmaelig;M) in the enzyme reaction mixture. This increase was completely inhibited by the presence of sulfhydryl group modifying reagent Nethylmaleimide (5.0 mM NEM) or digitonin (0.04%), which can solubilize the membranous lipids. When ATP-dependent calcium uptake by liver plasma membrane vesicles was measured by using 45CaCl2, the presence of regucalcin (0.1-0.5 \sgmaelig;M) in the reaction mixture caused a significant increase in the 45Ca2+ uptake. This increase was about 2-fold with 0.5 \sgmaelig;M regucalcin addition. An appreciable increase was seen by 5 min incubation with regucalcin addition. The regucalcin-enhanced ATP-dependent 45Ca2+ uptake by the plasma membrane vesicles was completely inhibited by the presence of NEM (5.0 mM) or digitonin (0.04%). These results demonstrate that regucalcin activates (Ca2+-Mg2+)-ATPase in the liver plasma membranes and that it can stimulate ATP-dependent calcium transport across the plasma membranes.  相似文献   

19.
1. The inhibition of calcium uptake and cellular respiration depend on the concentration of the compounds as shown by the concentration-effect curves. 2. The concentrations at which 50% inhibition of the transport of calcium takes place (caffeine 45 mM, theophylline 12 mM, theobromine, 4 mM) do not coincide exactly with those that produce the same effect on cellular respiration (caffeine 60 mM, theophylline 22 mM, theobromine 8 mM). 3. ATP concentrations under different conditions were also determined; a decrease in their value induced by the drugs was observed. No significant differences were observed, however, between the effect produced by the methyl-xanthines. 4. These findings suggest that these compounds are able to affect in some way the maintenance of energy gradients linked to the effects studied.  相似文献   

20.
The voltage-dependent calcium uptake in rat brain synaptosomes was measured under conditions in which [Ca2+]o/[Na+]i exchange was minimized to characterize the voltage-sensitive calcium channels from rats of different ages. In solutions of CaCl2 concentrations of less than 500 microM, the initial (5-s) calcium uptake declined by approximately 20-50% in 12- and 24-month-old rats relative to 3-month-old adults. Depolarization of synaptosomes from 3-month-old rats in a calcium-free medium or in the presence of 0.5 mM CaCl2 led to an exponential decline of the calcium uptake rate after 20 s (voltage- or voltage-and-calcium-dependent inactivation) to approximately 66 and 34% of the initial value with a t1/2 of 1.6 or 0.7 s, respectively. The presence of 1 microM nifedipine resulted in a 15-25% reduction of 45Ca2+ uptake rates, which appeared to affect noninactivating calcium channels, but addition of the calcium channel agonist Bay K 8644 was without effect. In 24-month-old rats, inactivation of 45Ca2+ uptake in calcium-free media was nondetectable, and in the presence of 0.5 mM CaCl2, the rate and extent of inactivation were also much lower than in 3-month-old animals (the t1/2 was 0.9 s, and the calcium uptake rate at 20 s was 55% of its initial value). Moreover, the presence of 1 microM nifedipine was without effect on initial calcium uptake or inactivation in synaptosomes from 24-month-old rats. These results indicate that the decrease in calcium channel-mediated 45Ca2+ uptake involves an inhibition or block of both dihydropyridine-resistant and -sensitive calcium channels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号