首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Separase, a large protease essential for sister chromatid separation, cleaves the cohesin subunit Scc1/Rad21 during anaphase and leads to dissociation of the link between sister chromatids. Securin, a chaperone and inhibitor of separase, is ubiquitinated by APC/cyclosome, and degraded by 26S proteasome in anaphase. Cdc48/VCP/p97, an AAA ATPase, is involved in a variety of cellular activities, many of which are implicated in the proteasome-mediated degradation. We previously reported that temperature-sensitive (ts) fission yeast Schizosaccharomyces pombe cdc48 mutants were suppressed by multicopy plasmid carrying the cut1(+)/separase gene and that the defective mitotic phenotypes of cut1 and cdc48 were similar. We here describe characterizations of Cdc48 mutant protein and the role of Cdc48 in sister chromatid separation. Mutant residue resides in the conserved D1 domain within the central hole of hexamer, while Cdc48 mutant protein possesses the ATPase activity. Consistent with the phenotypic similarity and the rescue of cdc48 mutant by overproduced Cut1/separase, the levels of Cut1 and also Cut2 are diminished in cdc48 mutant. We show that the stability of Cut1 during anaphase requires Cdc48. Cells lose viability during the traverse of anaphase in cdc48 mutant cells. Cdc48 may protect Cut1/separase and Cut2/securin against the instability during polyubiquitination and degradation in the metaphase-anaphase transition.  相似文献   

2.
The dual mechanism of separase regulation by securin   总被引:8,自引:0,他引:8  
BACKGROUND: Sister chromatid separation and segregation at anaphase onset are triggered by cleavage of the chromosomal cohesin complex by the protease separase. Separase is regulated by its binding partner securin in two ways: securin is required to support separase activity in anaphase; and, at the same time, securin must be destroyed via ubiquitylation before separase becomes active. The molecular mechanisms underlying this dual regulation of separase by securin are unknown.RESULTS: We show that, in budding yeast, securin supports separase localization. Separase enters the nucleus independently of securin, but securin is required and sufficient to cause accumulation of separase in the nucleus, where its known cleavage targets reside. Securin also ensures that separase gains full proteolytic activity in anaphase. We also show that securin, while present, directly inhibits the proteolytic activity of separase. Securin prevents the binding of separase to its substrates. It also hinders the separase N terminus from interacting with and possibly inducing an activating conformational change at the protease active site 150 kDa downstream at the protein's C terminus.CONCLUSIONS: Securin inhibits the proteolytic activity of separase in a 2-fold manner. While inhibiting separase, securin is able to promote nuclear accumulation of separase and help separase to become fully activated after securin's own destruction at anaphase onset.  相似文献   

3.
The key mitotic regulator securin is expressed at low levels in fetal brain compared with adult, and modulates the proliferation of human embryonic neuronal N-Tera2 (NT2) cells. We now examine the function and expression of securin's interacting partner separase, along with Rad21, the functional component of cohesin, which is cleaved by separase following interaction with securin. In contrast to securin, the cleaved forms of separase and Rad21 were highly expressed in human fetal cerebral cortex compared with adult. In a murine model of absent securin expression - the PTTG knock-out mouse - separase and Rad21 were over-expressed in multiple brain regions. In addition, cDNA array analysis of other key mitotic regulators additionally identified cyclin C and sestrin 2 to be induced in the brains of securin-null mice compared with wild type. Further, Rad21 mRNA expression was highly correlated with that of securin, separase, cyclin C and sestrin 2 in fetal brains. In embryonic neuronal NT2 cells, siRNA repression of separase failed to significantly alter cell turnover, whereas repression of securin expression resulted in increased levels of the activated forms of Rad21 and separase, and promoted cell proliferation. Our data suggest that the co-ordinated expression of separase, securin and Rad21 is fundamental for the developing brain.  相似文献   

4.
Cohesin holds sister chromatids together and is cleaved by separase/Cut1 to release DNA during the transition from mitotic metaphase to anaphase. The cohesin complex consists of heterodimeric structural maintenance of chromosomes (SMC) subunits (Psm1 and Psm3), which possess a head and a hinge, separated by long coiled coils. Non-SMC subunits (Rad21, Psc3 and Mis4) bind to the SMC heads. Kleisin/Rad21''s N-terminal domain (Rad21-NTD) interacts with Psm3''s head-coiled coil junction (Psm3-HCJ). Spontaneous mutations that rescued the cleavage defects in temperature-sensitive (ts) separase mutants were identified in the interaction interface, but the underlying mechanism is yet to be understood. Here, we performed site-directed random mutagenesis to introduce single amino acid substitutions in Psm3-HCJ and Rad21-NTD, and then identified 300 mutations that rescued the cohesin-releasing defects in a separase ts mutant. Mutational analysis indicated that the amino acids involved in hydrophobic cores (which may be in close contact) in Psm3-HCJ and Rad21-NTD are hotspots, since 80 mutations (approx. 27%) were mapped in these locations. Properties of these substitutions indicate that they destabilize the interaction between the Psm3 head and Rad21-NTD. Thus, they may facilitate sister chromatid separation in a cleavage-independent way through cohesin structural re-arrangement.  相似文献   

5.
Sister chromatid cohesion is established during replication by entrapment of both dsDNAs within the cohesin ring complex. It is dissolved in anaphase when separase, a giant cysteine endopeptidase, cleaves the Scc1/Rad21 subunit of cohesin, thereby triggering chromosome segregation. Separase is held inactive by association with securin until this anaphase inhibitor is destroyed at the metaphase-to-anaphase transition by ubiquitin-dependent degradation. The relevant ubiquitin ligase, the anaphase-promoting complex/cyclosome, also targets cyclin B1, thereby causing inactivation of Cdk1 and mitotic exit. Although separase is essential, securin knock-out mice are surprisingly viable and fertile. Capitalizing on our previous finding that Cdk1-cyclin B1 can also bind and inhibit separase, we investigated whether this kinase might be suitable to maintain faithful timing and execution of anaphase in the absence of securin. We found that, similar to securin, Cdk1-cyclin B1 regulates separase in both a positive and negative manner. Although securin associates with nascent separase to co-translationally assist proper folding, Cdk1-cyclin B1 acts on native state separase. Upon entry into mitosis, Cdk1-cyclin B1-dependent phosphorylation of Ser-1126 renders separase prone to inactivation by aggregation/precipitation. Stable association of Cdk1-cyclin B1 with phosphorylated separase counteracts this tendency and stabilizes separase in an inhibited yet activatable state. These opposing effects are suited to prevent premature cleavage of cohesin in early mitosis while ensuring timely activation of separase by anaphase-promoting complex/cyclosome-dependent degradation of cyclin B1. Coupling sister chromatid separation with subsequent exit from mitosis by this simplified mode might have been the common scheme of mitotic control prior to the evolution of securin.  相似文献   

6.
The spindle assembly checkpoint monitors the integrity of the spindle microtubules, which attach to sister chromatids at kinetochores and play a vital role in preserving genome stability by preventing missegregation. A key target of the spindle assembly checkpoint is securin, the separase inhibitor. In budding yeast, loss of securin results in precocious sister chromatid separation when the microtubule spindle is disrupted. However, in contrast to budding yeast, mammalian securin is not required for spindle checkpoint, suggesting that there are redundant mechanisms controlling the dissolution of sister chromatid cohesion in the absence of securin. One candidate mechanism is the inhibitory phosphorylation of separase. We generated a nonphosphorylable point mutant (S1121A) separase allele in securin-/- mouse embryonic stem cells. Securin(-/-)separase(+/S1121A) cells are viable but fail to maintain sister chromatid cohesion in response to the disruption of spindle microtubules, show enhanced sensitivity to nocodazole, and cannot recover from prometaphase arrest.  相似文献   

7.
Mammalian eggs remain arrested at metaphase of the second meiotic division (metII) for an indeterminate time before fertilization. During this period, which can last several hours, the continued attachment of sister chromatids is thought to be achieved by inhibition of the protease separase. Separase is known to be inhibited by binding either securin or Maturation (M-Phase)-Promoting Factor, a heterodimer of CDK1/cyclin B1. However, the relative contribution of securin and CDK/cyclin B1 to sister chromatid attachment during metII arrest has not been assessed. Although there are conditions in which either CDK1/cyclinB1 activity or securin can prevent sister chromatid disjunction, principally by overexpression of non-degradable cyclin B1 or securin, we find here that separase activity is primarily regulated by securin and not CDK1/cyclin B1. Thus the CDK1 inhibitor roscovitine and an antibody we designed to block the interaction of CDK1/cyclin B1 with separase, both failed to induce sister disjunction. In contrast, securin morpholino knockdown specifically induced loss of sister attachment, that could be restored by securin cRNA rescue. During metII arrest separase appears primarily regulated by securin binding, not CDK1/cyclin B1.  相似文献   

8.
Regulation of human separase by securin binding and autocleavage   总被引:20,自引:0,他引:20  
BACKGROUND: Sister chromatid separation is initiated by separase, a protease that cleaves cohesin and thereby dissolves sister chromatid cohesion. Separase is activated by the degradation of its inhibitor securin and by the removal of inhibitory phosphates. In human cells, separase activation also coincides with the cleavage of separase, but it is not known if this reaction activates separase, which protease cleaves separase, and how separase cleavage is regulated.RESULTS: Inhibition of separase expression in human cells by RNA interference causes the formation of polyploid cells with large lobed nuclei. In mitosis, many of these cells contain abnormal chromosome plates with unseparated sister chromatids. Inhibitor binding experiments in vitro reveal that securin prevents the access of substrate analogs to the active site of separase. Upon securin degradation, the active site of full-length separase becomes accessible, allowing rapid autocatalytic cleavage of separase at one of three sites. The resulting N- and C-terminal fragments remain associated and can be reinhibited by securin. A noncleavable separase mutant retains its ability to cleave cohesin in vitro.CONCLUSIONS: Our results suggest that separase is required for sister chromatid separation during mitosis in human cells. Our data further indicate that securin inhibits separase by blocking the access of substrates to the active site of separase. Securin proteolysis allows autocatalytic processing of separase into a cleaved form, but separase cleavage is not essential for separase activation.  相似文献   

9.
Securin and separase play a key role in sister chromatid separation during anaphase. However, a growing body of evidence suggests that in addition to regulating chromosome segregation, securin and separase display functions implicated in membrane traffic in Caenorhabditis elegans and Drosophila. Here we show that in mammalian cells both securin and separase associate with membranes and that depletion of either protein causes robust swelling of the trans-Golgi network (TGN) along with the appearance of large endocytic vesicles in the perinuclear region. These changes are accompanied by diminished constitutive protein secretion as well as impaired receptor recycling and degradation. Unexpectedly, cells depleted of securin or separase display defective acidification of early endosomes and increased membrane recruitment of vacuolar (V-) ATPase complexes, mimicking the effect of the specific V-ATPase inhibitor Bafilomycin A1. Taken together, our findings identify a new functional role of securin and separase in the modulation of membrane traffic and protein secretion that implicates regulation of V-ATPase assembly and function.  相似文献   

10.
Cytokinesis in eukaryotic cells requires the inactivation of mitotic cyclin-dependent kinase complexes. An apparent exception to this relationship is found in Schizosaccharomyces pombe mutants with mutations of the anaphase-promoting complex (APC). These conditional lethal mutants arrest with unsegregated chromosomes because they cannot degrade the securin, Cut2p. Although failing at nuclear division, these mutants septate and divide. Since septation requires Cdc2p inactivation in wild-type S. pombe, it has been suggested that Cdc2p inactivation occurs in these mutants by a mechanism independent of cyclin degradation. In contrast to this prediction, we show that Cdc2p kinase activity fluctuates in APC cut mutants due to Cdc13/cyclin B destruction. In APC-null mutants, however, septation and cutting do not occur and Cdc13p is stable. We conclude that APC cut mutants are hypomorphic with respect to Cdc13p degradation. Indeed, overproduction of nondestructible Cdc13p prevents septation in APC cut mutants and the normal reorganization of septation initiation network components during anaphase.  相似文献   

11.
Cohesin is a multiprotein complex essential for sister-chromatid cohesion. It plays a pivotal role in proper chromosome segregation and DNA damage repair. The mitotic behavior of cohesin is controlled through its phosphorylation, which possibly induces the dissociation of cohesin from chromosomes and enhances its susceptibility to separase. Here, we report using mass spectrometry and anti-phospho antibodies that the central domain of Rad21, the separase-target subunit of Schizosaccharomyces pombe cohesin, is regulated by various kinase-induced phosphorylation at nine residues, indicating the multiple roles for S. pombe cohesin. In vegetative and non-dividing G0 cells, Rad21 is phosphorylated by unknown S/TP-consensus kinases, in mitotic and non-mitotic cells by polo/Plo1 and CDK, and in DNA-damaged cells by Rad3/ATR. While mitotic phosphorylation is implicated in the dissociation of Rad21 and its cleavage by separase in anaphase, the Rad3/ATR-dependent damage-induced phosphorylation occurs intensively at the time of repair completion, and only in post-replicative cells. This damage-induced Rad21 phosphorylation is involved in the recovery process of cells from checkpoint arrest, and needed for the removal of cohesin by separase after the completion of damage repair. These complex phospho-regulations of Rad21 indicate the functional significance of cohesin in cell adaptation to a variety of cellular conditions.  相似文献   

12.
At the onset of anaphase, a caspase-related protease (separase) destroys the link between sister chromatids by cleaving the cohesin subunit Scc1. During most of the cell cycle, separase is kept inactive by binding to an inhibitory protein called securin. Separase activation requires proteolysis of securin, which is mediated by an ubiquitin protein ligase called the anaphase-promoting complex. Cells regulate anaphase entry by delaying securin ubiquitination until all chromosomes have attached to the mitotic spindle. Though no longer regulated by this mitotic surveillance mechanism, sister separation remains tightly cell cycle regulated in yeast mutants lacking securin. We show here that the Polo/Cdc5 kinase phosphorylates serine residues adjacent to Scc1 cleavage sites and strongly enhances their cleavage. Phosphorylation of separase recognition sites may be highly conserved and regulates sister chromatid separation independently of securin.  相似文献   

13.
Timely progression into mitosis is necessary for normal cell division. This transition is sensitive to the levels of cyclin B, the regulatory subunit of the master mitotic kinase, Cdk1. Cyclin B accumulates during G2 and prophase when its rate of destruction by the anaphase promoting complex (APC) is low. Securin is also an APC substrate and is known for its role in inactivating the cohesin-cleaving enzyme, separase, until the metaphase to anaphase transition. Here we show that securin has an additional role in cell-cycle regulation, that of modulating the timing of entry into M-phase. In mouse oocytes, excess securin caused stabilization of cyclin B and precocious entry into M-phase. Depletion of securin increased cyclin B degradation, resulting in delayed progression into M-phase. This effect required APC activity and was reversed by expression of wild-type securin. These data reveal a role for securin at the G2-M transition and suggest a more general mechanism whereby physiological levels of co-competing APC substrates function in modulating the timing of cell-cycle transitions.  相似文献   

14.
BACKGROUND: Anaphase-promoting complex (APC)/cyclosome and 26S proteasome are respectively required for polyubiquitination and degradation of mitotic cyclin and anaphase inhibitor Cut2 (Pds1/securin). In fission yeast, mutant cells defective in cyclosome and proteasome fail to complete mitosis and have hypercondensed chromosomes and a short spindle. A similar phenotype is seen in a temperature-sensitive strain cut8-563 at 36 degrees C, but the molecular basis for Cut8 function is little understood. RESULTS: At high temperature, the level of Cut8 greatly increases and it becomes essential to the progression of anaphase. In cut8 mutants, chromosome mis-segregation and aberrant spindle dynamics occur, but cytokinesis takes place with normal timing, leading to the cut phenotype. This is due to the fact that destruction of mitotic cyclin and Cut2 in the nucleus is dramatically delayed, though polyubiquitination of Cdc13 occurs in cut8 mutant. Cut8 is localized chiefly to the nucleus and nuclear periphery, a distribution highly similar to that of 26S proteasome. In cut8 mutant, however, 26S proteasome becomes mostly cytoplasmic, showing that Cut8 is needed for its proper localization. CONCLUSION: Cut8 is a novel evolutionarily conserved heat-inducible regulator. It facilitates anaphase-promoting proteolysis by recruiting 26S proteasome to a functionally efficient nuclear location.  相似文献   

15.
H Funabiki  K Kumada    M Yanagida 《The EMBO journal》1996,15(23):6617-6628
Fission yeast Schizosaccharomyces pombe temperature-sensitive (ts) cut1 mutants fail to separate sister chromatids in anaphase but the cells continue to divide, leading to bisection of the undivided nucleus (the cut phenotype). If cytokinesis is blocked, replication continues, forming a giant nucleus with polyploid chromosomes. We show here that the phenotype of ts cut2-364 is highly similar to that of cut1 and that the functions of the gene products of cut1+ and cut2+ are closely interrelated. The cut1+ and cut2+ genes are essential for viability and interact genetically. Cut1 protein concentrates along the short spindle in metaphase as does Cut2. Cut1 (approximately 200 kDa) and Cut2 (42 kDa) associate, as shown by immunoprecipitation, and co-sediment as large complexes (30 and 40S) in sucrose gradient centrifugation. Their behavior in the cell cycle is strikingly different, however: Cut2 is degraded in anaphase by the same proteolytic machinery used for the destruction of cyclin B, whereas Cut1 exists throughout the cell cycle. The essential function of the Cut1-Cut2 complex which ensures sister chromatid separation may be regulated by Cut2 proteolysis. The C-terminal region of Cut1 is evolutionarily conserved and similar to that of budding yeast Esp1, filamentous fungi BimB and a human protein.  相似文献   

16.
Replicated sister chromatids are held in close association from the time of their synthesis until their separation during the next mitosis. This association is mediated by the ring-shaped cohesin complex that appears to embrace the sister chromatids. Upon proteolytic cleavage of the α-kleisin cohesin subunit at the metaphase-to-anaphase transition by separase, sister chromatids are separated and segregated onto the daughter nuclei. The more complex segregation of chromosomes during meiosis is thought to depend on the replacement of the mitotic α-kleisin cohesin subunit Rad21/Scc1/Mcd1 by the meiotic paralog Rec8. In Drosophila, however, no clear Rec8 homolog has been identified so far. Therefore, we have analyzed the role of the mitotic Drosophila α-kleisin Rad21 during female meiosis. Inactivation of an engineered Rad21 variant by premature, ectopic cleavage during oogenesis results not only in loss of cohesin from meiotic chromatin, but also in precocious disassembly of the synaptonemal complex (SC). We demonstrate that the lateral SC component C(2)M can interact directly with Rad21, potentially explaining why Rad21 is required for SC maintenance. Intriguingly, the experimentally induced premature Rad21 elimination, as well as the expression of a Rad21 variant with destroyed separase consensus cleavage sites, do not interfere with chromosome segregation during meiosis, while successful mitotic divisions are completely prevented. Thus, chromatid cohesion during female meiosis does not depend on Rad21-containing cohesin.  相似文献   

17.
We demonstrate a role for Qri2 in the essential DNA repair function of the Smc5/6 complex in Saccharomyces cerevisiae. We generated temperature-sensitive (ts) mutants in QRI2 and characterized their properties. The mutants arrest after S phase and prior to mitosis. Furthermore, the arrest is dependant on the Rad24 checkpoint, and is also accompanied by phosphorylation of the Rad53 checkpoint effector kinase. The mutants also display genome instability and are sensitive to agents that damage DNA. Two-hybrid screens reveal a physical interaction between Qri2 and proteins that are non-Smc elements of the Smc5/6 DNA repair complex, which is why we propose the name NSE4 for the open reading frame previously known as QRI2. A key role for Nse4 in Smc5/6 function is likely, as overexpressing known subunits of the Smc5/6 complex suppresses nse4(ts) cell cycle arrest. The nse4(ts) growth arrest is non-lethal and unlike the catastrophic nuclear fragmentation phenotype of smc6(ts) mutants, the nucleus remains intact; replicative intermediates and sheared DNA are not detected. This could imply a role for Nse4 in maintenance of higher order chromosome structure.  相似文献   

18.
ATR/Rad3-like kinases promote the DNA damage checkpoint through regulating Chk1 that restrains the activation of cyclin-dependent kinases. In fission yeast, Crb2, a BRCT-domain protein that is similar to vertebrate 53BP1, plays a crucial role in establishing this checkpoint. We report here that Crb2 regulates DNA damage checkpoint through temporal and dynamic interactions with Rad3, Chk1 and replication factor Cut5. The active complex formation between Chk1 and Crb2 is regulated by Rad3 and became maximal during the checkpoint arrest. Chk1 activation seems to need two steps of interaction changes: the loss of Rad3-Chk1 and Rad3-Crb2 interactions, and the association between hyperphosphorylated forms of Chk1 and Crb2. Chk1 is the major checkpoint kinase for the arrest of DNA polymerase mutants. The in vitro assay of Chk1 showed that its activation requires the presence of Crb2 BRCT. Hyperphosphorylation of Crb2 is also dependent on its intact BRCT. Finally, we show direct interaction between Rad3 and Crb2, which is inhibitory to Rad3 activity. Hence, Crb2 is the first to interact with both Rad3 and Chk1 kinases.  相似文献   

19.
The yeast separase proteins Esp1 and Cut1 are required for loss of sister chromatid cohesion that occurs at the moment of anaphase onset. Circumstantial evidence has linked human separase to centromere separation at anaphase, but a direct test that the role of this enzyme is functionally conserved with the yeast proteins is lacking. Here we describe the effects of separase depletion from human cells using RNA interference. Surprisingly, HeLa cells lacking separase are delayed or arrest at the G2/M phase transition. This arrest is not likely due to the activation of a known checkpoint control, but may be a result of a failure to construct a mitotic chromosome. Without separase, cells also have a prolonged prometaphase, perhaps resulting from defects in spindle assembly or dynamics. In cells that reach mitosis, sister arm resolution and separation are perturbed, whereas in anaphase cells sister centromeres do appear to separate. These data indicate that separase function is not restricted to anaphase initiation and that its role in promoting loss of sister chromatid cohesion might be preferentially at arms but not centromeres.  相似文献   

20.
Separase is an evolutionarily conserved protease that is essential for chromosome segregation and cleaves cohesin Scc1/Rad21, which joins the sister chromatids together. Although mammalian separase also functions in chromosome segregation, our understanding of this process in mammals is still incomplete. We generated separase knockout mice, reporting an essential function for mammalian separase. Separase-deficient mouse embryonic fibroblasts exhibited severely restrained increases in cell number, polyploid chromosomes, and amplified centrosomes. Chromosome spreads demonstrated that multiple chromosomes connected to a centromeric region. Live observation demonstrated that the chromosomes of separase-deficient cells condensed, but failed to segregate, although subsequent cytokinesis and chromosome decondensation proceeded normally. These results establish that mammalian separase is essential for the separation of centromeres, but not of the arm regions of chromosomes. Other cell cycle events, such as mitotic exit, DNA replication, and centrosome duplication appear to occur normally. We also demonstrated that heterozygous separase-deficient cells exhibited severely restrained increases in cell number with apparently normal mitosis in the absence of securin, which is an inhibitory partner of separase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号