首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wild‐type p53 functions as a tumour suppressor while mutant p53 possesses oncogenic potential. Until now it remains unclear how a single mutation can transform p53 into a functionally distinct gene harbouring a new set of original cellular roles. Here we show that the most common p53 cancer mutants express a larger number and higher levels of shorter p53 protein isoforms that are translated from the mutated full‐length p53 mRNA. Cells expressing mutant p53 exhibit “gain‐of‐function” cancer phenotypes, such as enhanced cell survival, proliferation, invasion and adhesion, altered mammary tissue architecture and invasive cell structures. Interestingly, Δ160p53‐overexpressing cells behave in a similar manner. In contrast, an exogenous or endogenous mutant p53 that fails to express Δ160p53 due to specific mutations or antisense knock‐down loses pro‐oncogenic potential. Our data support a model in which “gain‐of‐function” phenotypes induced by p53 mutations depend on the shorter p53 isoforms. As a conserved wild‐type isoform, Δ160p53 has evolved during millions of years. We thus provide a rational explanation for the origin of the tumour‐promoting functions of p53 mutations.  相似文献   

2.
p63 is a member of the p53 tumour suppressor family that includes p73. The p63 gene encodes a protein comprising an N-terminal transactivation domain, a DNA binding domain and an oligomerization domain, but varies in the organization of the C-terminus as a result of complex alternative splicing. p63α contains a C-terminal sterile α motif (SAM) domain that is thought to function as a protein-protein interaction domain. Several missense and heterozygous frame shift mutations, encoded within exon 13 and 14 of the p63 gene, have been identified in the p63α SAM domain in patients suffering from ankyloblepharon-ectodermal dysplasia-clefting syndrome. Here we report the solution and high resolution crystal structures of the p63α SAM domain and investigate the effect of several mutations (L553F/V, C562G/W, G569V, Q575L and I576T) on the stability of the domain. The possible effects of other mutations are also discussed.  相似文献   

3.
The p53 gene super family consists of three members; TP53, TP63 and TP73, encoding proteins p53, p63 and p73. Whilst p63 appears to have an essential role in embryonic development with a less clear role in carcinogenesis, irregularities in p53 and p73 signalling are implicated in tumour formation. As such, p53 is a tumour suppressor which is mutated in over 50% cancers and p73 was recently formally classified as a tumour suppressor based on data showing p73 deficient mice generate spontaneous tumours similar to those observed in p53 null mice. Dysregulation of both p53 and p73 has been correlated with cancer progression in many cell types and although mutation of these genes is often observed, some form of p53/p73 deregulation likely occurs in all tumour cells. The discovery that complementary micro RNAs (miRNAs) are able to target both of these genes provides a potential new means of perturbing p53/p73 signalling networks in cancer cells. Here we summarise the current literature regarding the involvement of miRNAs in the modulation of p53 family proteins and cancer development and detail the use of in silico methods to reveal key miRNA targets.  相似文献   

4.
5.
Mitochondria have recently emerged as new and promising targets for cancer prevention and therapy. One of the reasons for this is that mitochondria are instrumental to many types of cell death and often lie downstream from the initial actions of anti-cancer drugs. Unlike the tumour suppressor gene encoding p53 that is notoriously prone to inactivating mutations but whose function is essential for induction of apoptosis by DNA-targeting agents (such as doxorubicin or 5-fluorouracil), mitochondria present targets that are not so compromised by genetic mutation and whose targeting overcomes problems with mutations of upstream targets such as p53. We have recently proposed a novel class of anti-cancer agents, mitocans that exert their anti-cancer activity by destabilising mitochondria, promoting the selective induction of apoptotic death in tumour cells. In this communication, we review recent findings on mitocans and propose a common basis for their mode of action in inducing apoptosis of cancer cells. We use as an example the analogues of vitamin E that are proving to be cancer cell-specific and may soon be developed into efficient anti-cancer drugs.  相似文献   

6.
On the shoulders of giants: p63, p73 and the rise of p53   总被引:37,自引:0,他引:37  
The discoveries of the p53 homologs, p63 and p73, have both fueled new insights and exposed enigmas in our understanding of the iconic p53 tumor suppressor. Although the pivotal role of p53 in cancer pathways remains unchallenged, because p63 and p73 are now implicated in stem cell identity, neurogenesis, natural immunity and homeostatic control. Despite their seemingly separate tasks, there are hints that the p53 family members both collaborate and interfere with one another. The question remains, therefore, as to whether these genes evolved to function independently or whether their familial ties still bind them in pathways of cell proliferation, death and tumorigenesis.  相似文献   

7.
Synthetic lethality is a promising strategy for specific targeting of cancer cells that carry mutations that are absent in normal cells. This approach may help overcome the challenge associated with targeting dysfunctional tumour suppressors, such as p53 and Rb?(refs?, ). Here we show that Dicer1 targeting prevents retinoblastoma formation in mice by synthetic lethality with combined inactivation of p53 and Rb. Although Dicer1 functions as a haploinsufficient tumour suppressor, its complete loss of function is selected against during tumorigenesis. We show that Dicer1 deficiency is tolerated in Rb-deficient retinal progenitor cells harbouring an intact p53 pathway, but not in the absence of p53. This synthetic lethality is mediated by the oncogenic miR-17-92 cluster because its deletion phenocopies Dicer1 loss in this context. miR-17-92?inactivation suppresses retinoblastoma formation in mice and co-silencing of miR-17/20a and p53 cooperatively decreases the viability of human retinoblastoma cells. These data provide an explanation for the selective pressure against loss of Dicer1 during tumorigenesis and a proof-of-concept that targeting miRNAs may potentially represent a general approach for synthetic lethal targeting of cancer cells that harbour specific cancer-inducing genotypes.  相似文献   

8.
9.
P63 and P73: P53 mimics, menaces and more   总被引:1,自引:0,他引:1  
Inactivation of the tumour suppressor p53 is the most common defect in cancer cells. The discovery of its two close relatives, p63 and p73, was therefore both provocative and confounding. Were these new genes tumour suppressors, p53 regulators, or evolutionary spin-offs? Both oncogenic and tumour-suppressor properties have now been attributed to the p53 homologues, perhaps reflecting the complex, often contradictory, protein products encoded by these genes. p63 and p73 are further implicated in many p53-independent pathways, including stem-cell regeneration, neurogenesis and sensory processes.  相似文献   

10.
The completion of the Drosophila genome sequencing project [Science 287 (2000) 2185] has reconfirmed the fruit fly as a model organism to study human disease. Comparison studies have shown that two thirds of genes implicated in human cancers have counterparts in the fly [Curr. Opin. Genet. Dev. 11 (2001) 274; J. Cell Biol. 150 (2000) F23], including the tumour suppressor, p53. The suitability of the fruit fly to study the function of the tumour suppressor p53 is further exemplified by the lack of p53 family members within the fly genome, i.e., no homologues to p63 and p73 have been identified. Hence, there is no redundancy between family members greatly facilitating the analysis of p53 function. In addition, studying p53 in Drosophila provides an opportunity to learn about the evolution of tumour suppressors. Here, we will discuss what is known about Drosophila p53 in relation to human p53.  相似文献   

11.
Three members of p53 family, p53, p63 and p73, can transactivate their specific target genes through a p53 consensus sequence-binding motif which consists with direct repeats of PuPuPuC(T/A)(T/A)GPyPyPy as a whole-site of p53-binding site. p63, an epidermal stem cells marker, can regulate epidermal development and differentiation, but p53 has no similar biological activity. One isoform of p63, TAp63α, can active an epidermal basal cell marker, keratin 14. However, the p53-binding site does not exist as a whole-site in the K14 promoter region, although it contains three putative p53 half-binding sites at -269 to -1 of the K14 promoter. Two of three putative half-sites of the p53-binding site can be bound by p63α by electrophoresis mobility shift assay and DNA affinity purification assay. Only mutation of the p53 half-binding site at -140 to -131, the TAp63α induced K14 promoter activity can be abolished. This half-site was specifically activated by p63, but not by p53. Once we extend this p53 half-site to a whole p53-binding site in K14 promoter, both p53 and p63 expression vectors can activate its activity. Therefore, we propose that the different length of p53-binding site would determinate the gene regulated by different p53 family proteins.  相似文献   

12.
Functional regulation of p73 and p63: development and cancer   总被引:18,自引:0,他引:18  
  相似文献   

13.
14.
Chae YS  Kim H  Kim D  Lee H  Lee HO 《FEBS letters》2012,586(8):1128-1134
ΔNp63α is a p63 isoform that is predominantly expressed in the epidermal stem cells and in cancer. To find the regulatory pathways of ΔNp63α, we assessed whether ΔNp63α is acetylated and determined the functional implications of acetylation. First, the hinge region of p63 was shown to be acetylated by PCAF, similarly to other p53 family members. Second, acetylation synergistically induced cytoplasmic localization of ΔNp63α. Finally, acetyl-ΔNp63α was induced during high-density culture, suggesting that acetylation of ΔNp63α may reinforce cell cycle arrest upon cell contact. Altogether, these findings suggest that acetylation of ΔNp63α contributes to the epidermal homeostasis.  相似文献   

15.
Inactivation of the p53 tumour suppressor, either by mutation or by overexpression of its inhibitors Hdm2 and HdmX is the most frequent event in cancer. Reactivation of p53 by targeting Hdm2 and HdmX is therefore a promising strategy for therapy. However, Hdm2 inhibitors do not prevent inhibition of p53 by HdmX, which impedes p53-mediated apoptosis. Here, we show that p53 reactivation by the small molecule RITA leads to efficient HdmX degradation in tumour cell lines of different origin and in xenograft tumours in vivo. Notably, HdmX degradation occurs selectively in cancer cells, but not in non-transformed cells. We identified the inhibition of the wild-type p53-induced phosphatase 1 (Wip1) as the major mechanism important for full engagement of p53 activity accomplished by restoration of the ataxia telangiectasia mutated (ATM) kinase-signalling cascade, which leads to HdmX degradation. In contrast to previously reported transactivation of Wip1 by p53, we observed p53-dependent repression of Wip1 expression, which disrupts the negative feedback loop conferred by Wip1. Our study reveals that the depletion of both HdmX and Wip1 potentiates cell death due to sustained activation of p53. Thus, RITA is an example of a p53-reactivating drug that not only blocks Hdm2, but also inhibits two important negative regulators of p53 - HdmX and Wip1, leading to efficient elimination of tumour cells.  相似文献   

16.
17.
p63 regulates olfactory stem cell self-renewal and differentiation   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号