首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction between transmembrane helices is of great interest because it directly determines biological activity of a membrane protein. Either destroying or enhancing such interactions can result in many diseases related to dysfunction of different tissues in human body. One much studied form of membrane proteins known as bitopic protein is a dimer containing two membrane-spanning helices associating laterally. Establishing structure-function relationship as well as rational design of new types of drugs targeting membrane proteins requires precise structural information about this class of objects. At present time, to investigate spatial structure and internal dynamics of such transmembrane helical dimers, several strategies were developed based mainly on a combination of NMR spectroscopy, optical spectroscopy, protein engineering and molecular modeling. These approaches were successfully applied to homo- and heterodimeric transmembrane fragments of several bitopic proteins, which play important roles in normal and in pathological conditions of human organism.Key words: bitopic proteins, transmembrane domain dimer, spatial structure, dynamics, protein-protein interactions, protein-membrane interactions, molecular modeling, NMR  相似文献   

2.
The topology of a bitopic membrane protein consists of a single transmembrane helix connecting two extra-membranous domains. As opposed to helices from polytopic proteins, the transmembrane helices of bitopic proteins were initially considered as merely hydrophobic anchors, while more recent studies have begun to shed light on their role in the protein's function. Herein the overall importance of transmembrane helices from bitopic membrane proteins was analyzed using a relative conservation analysis. Interestingly, the transmembrane domains of bitopic proteins are on average, significantly more conserved than the remainder of the protein, even when taking into account their smaller amino acid repertoire. Analysis of highly conserved transmembrane domains did not reveal any unifying consensus, pointing to a great diversity in their conservation patterns. However, Fourier power spectrum analysis was able to show that regardless of the conservation motif, in most sequences a significant conservation moment was observed, in that one side of the helix was conserved while the other was not. Taken together, it may be possible to conclude that a significant proportion of transmembrane helices from bitopic membrane proteins participate in specific interactions, in a variety of modes in the plane of the lipid bilayer.  相似文献   

3.
The topology of a bitopic membrane protein consists of a single transmembrane helix connecting two extra-membranous domains. As opposed to helices from polytopic proteins, the transmembrane helices of bitopic proteins were initially considered as merely hydrophobic anchors, while more recent studies have begun to shed light on their role in the protein's function. Herein the overall importance of transmembrane helices from bitopic membrane proteins was analyzed using a relative conservation analysis. Interestingly, the transmembrane domains of bitopic proteins are on average, significantly more conserved than the remainder of the protein, even when taking into account their smaller amino acid repertoire. Analysis of highly conserved transmembrane domains did not reveal any unifying consensus, pointing to a great diversity in their conservation patterns. However, Fourier power spectrum analysis was able to show that regardless of the conservation motif, in most sequences a significant conservation moment was observed, in that one side of the helix was conserved while the other was not. Taken together, it may be possible to conclude that a significant proportion of transmembrane helices from bitopic membrane proteins participate in specific interactions, in a variety of modes in the plane of the lipid bilayer.  相似文献   

4.
As a whole, integral membrane proteins represent about one third of sequenced genomes, and more than 50% of currently available drugs target membrane proteins, often cell surface receptors. Some membrane protein classes, with a defined number of transmembrane (TM) helices, are receiving much attention because of their great functional and pharmacological importance, such as G protein-coupled receptors possessing 7 TM segments. Although they represent roughly half of all membrane proteins, bitopic proteins (with only 1 TM helix) have so far been less well characterized. Though they include many essential families of receptors, such as adhesion molecules and receptor tyrosine kinases, many of which are excellent targets for biopharmaceuticals (peptides, antibodies, et al.). A growing body of evidence suggests a major role for interactions between TM domains of these receptors in signaling, through homo and heteromeric associations, conformational changes, assembly of signaling platforms, etc. Significantly, mutations within single domains are frequent in human disease, such as cancer or developmental disorders. This review attempts to give an overview of current knowledge about these interactions, from structural data to therapeutic perspectives, focusing on bitopic proteins involved in cell signaling.Key words: bitopic membrane proteins, transmembrane domains, transmembrane signaling, helix-helix interactions, receptors  相似文献   

5.
As a whole, integral membrane proteins represent about one third of sequenced genomes, and more than 50% of currently available drugs target membrane proteins, often cell surface receptors. Some membrane protein classes, with a defined number of transmembrane (TM) helices, are receiving much attention because of their great functional and pharmacological importance, such as G protein-coupled receptors possessing 7 TM segments. Although they represent roughly half of all membrane proteins, bitopic proteins (with only 1 TM helix) have so far been less well characterized. Though they include many essential families of receptors, such as adhesion molecules and receptor tyrosine kinases, many of which are excellent targets for biopharmaceuticals (peptides, antibodies, et al.). A growing body of evidence suggests a major role for interactions between TM domains of these receptors in signaling, through homo and heteromeric associations, conformational changes, assembly of signaling platforms, etc. Significantly, mutations within single domains are frequent in human disease, such as cancer or developmental disorders. This review attempts to give an overview of current knowledge about these interactions, from structural data to therapeutic perspectives, focusing on bitopic proteins involved in cell signaling.  相似文献   

6.
Recently, there have been several technical advances in the use of solution and solid-state NMR spectroscopy to determine the structures of membrane proteins. The structures of several isolated transmembrane (TM) helices and pairs of TM helices have been solved by solution NMR methods. Similarly, the complete folds of two TM beta-barrel proteins with molecular weights of 16 and 19 kDa have been determined by solution NMR in detergent micelles. Solution NMR has also provided a first glimpse at the dynamics of an integral membrane protein. Structures of individual TM helices have also been determined by solid-state NMR. A combination of NMR with site-directed spin-label electron paramagnetic resonance or Fourier transform IR spectroscopy allows one to assemble quite detailed protein structures in the membrane.  相似文献   

7.
8.
Interactions of transmembrane helices play a crucial role in the folding and oligomerisation of integral membrane proteins. In order to uncover novel sequence motifs mediating these interactions, we randomised one face of a transmembrane helix with a set of non-polar or moderately polar amino acids. Those sequences capable of self-interaction upon integration into bacterial inner membranes were selected by means of the ToxR/POSSYCCAT system. A comparison between low/medium-affinity and high-affinity sequences reveals that high-affinity sequences are strongly enriched in phenylalanine residues that are frequently observed at the − 3 position of GxxxG motifs, thus yielding FxxGxxxG motifs. Mutation of Phe or GxxxG in selected sequences significantly reduces self-interaction of the transmembrane domains without affecting their efficiency of membrane integration. Conversely, grafting FxxGxxxG onto unrelated transmembrane domains strongly enhances their interaction. Further, we find that FxxGxxxG is significantly over-represented in transmembrane domains of bitopic membrane proteins. The same motif contributes to self-interaction of the vesicular stomatitis virus G protein transmembrane domain. We conclude that Phe stabilises membrane-spanning GxxxG motifs. This is one example of how the role of certain side-chains in helix-helix interfaces is modulated by sequence context.  相似文献   

9.
The folding and stability of transmembrane proteins is a fundamental and unsolved biological problem. Here, single bacteriorhodopsin molecules were mechanically unfolded from native purple membranes using atomic force microscopy and force spectroscopy. The energy landscape of individual transmembrane alpha helices and polypeptide loops was mapped by monitoring the pulling speed dependence of the unfolding forces and applying Monte Carlo simulations. Single helices formed independently stable units stabilized by a single potential barrier. Mechanical unfolding of the helices was triggered by 3.9-7.7 A extension, while natural unfolding rates were of the order of 10(-3) s(-1). Besides acting as individually stable units, helices associated pairwise, establishing a collective potential barrier. The unfolding pathways of individual proteins reflect distinct pulling speed-dependent unfolding routes in their energy landscapes. These observations support the two-stage model of membrane protein folding in which alpha helices insert into the membrane as stable units and then assemble into the functional protein.  相似文献   

10.
A comparative analysis of 6039 single-pass (bitopic) membrane proteins from six evolutionarily distant organisms was performed based on data from the Membranome database. The observed repertoire of bitopic proteins is significantly enlarged in eukaryotic cells and especially in multicellular organisms due to the diversification of enzymes, emergence of proteins involved in vesicular trafficking, and expansion of receptors, structural, and adhesion proteins. The majority of bitopic proteins in multicellular organisms are located in the plasma membrane (PM) and involved in cell communication. Bitopic proteins from different membranes significantly diverge in terms of their biological functions, size, topology, domain architecture, physical properties of transmembrane (TM) helices and propensity to form homodimers. Most proteins from eukaryotic PM and endoplasmic reticulum (ER) have the N-out topology. The predicted lengths of TM helices and hydrophobic thicknesses, stabilities and hydrophobicities of TM α-helices are the highest for proteins from eukaryotic PM, intermediate for proteins from prokaryotic cells, ER and Golgi apparatus, and lowest for proteins from mitochondria, chloroplasts, and peroxisomes. Tyr and Phe residues accumulate at the cytoplasmic leaflet of PM and at the outer leaflet of membranes of bacteria, Golgi apparatus, and nucleus. The propensity for dimerization increases from unicellular to multicellular eukaryotes, from enzymes to receptors, and from intracellular membrane proteins to PM proteins. More than half of PM proteins form homodimers with a 2:1 ratio of right-handed to left-handed helix packing arrangements. The inverse ratio (1:2) was observed for dimers from the ER, Golgi and vesicles.  相似文献   

11.
Abstract

The high affinity IgE receptor, possesses a tetrameric structure. The 243 residue β subunit is a polytopic protein with four hydrophobic membrane-spanning segments, whereas the individual α and γ subunits are bitopic proteins each containing one transmembrane domain in their monomeric form. In the proposed topographical model (Blank et al., 1989), the four trans-membrane α helices of the β subunit are connected by three loop sequences.

To study the individual subunits and intact receptor, this membrane protein was divided into domains such as its loop peptides, cytoplasmic peptides and transmembrane helices according to Blank et al., 1989. The 3D structure of the synthesized loop peptides and cytoplasmic peptides were calculated; CD and/or NMR data were used as appropriate to generate the resultant structures which were then used as data basis for the higher level calculations.

The four individual transmembrane helices of the β subunit were characterised, first of all, by mapping the relative lipophilicity of their surfaces using lipophilic probes. A second procedure, docking of the individual helices in pairs, was used to predict helix–helix interactions.

The data on the relative lipophilicity of the surfaces as well as the surfaces that favoured helix–helix interactions were used in combination with the spectroscopy-based structures of the loops and cytoplasmic domains to calculate via molecular dynamics, the helix arrangement and 3D structure of the β subunit of the high affinity IgE receptor. In the final analysis, the molecular simulations yielded two structures of the β subunit, which should form a basis for the modelling of the whole high affinity IgE receptor.  相似文献   

12.
Deuterium/hydrogen exchange factors (chi) were measured for the backbone amide sites of the membrane-bound forms of the 50-residue fd coat protein and the 23-residue magainin2 peptide in lipid micelles by solution nuclear magnetic resonance spectroscopy. By combining kinetic and thermodynamic effects, deuterium/hydrogen exchange factors overcome the principal limitations encountered in the measurements of kinetic protection factors and thermodynamic fractionation factors for membrane proteins. The magnitudes of the exchange factors can be correlated with the structure and topology of membrane-associated polypeptides. In fd coat protein, residues in the transmembrane helix have exchange factors that are substantially smaller than those in the amphipathic surface helix or the loop connecting the two helices. For the amphipathic helical peptide, magainin2, the exchange factors of residues exposed to the solvent are appreciably larger than those that face the hydrocarbon portion of membrane bilayers. These examples demonstrate that deuterium/hydrogen exchange factors can be measured by solution NMR spectroscopy and used to identify residues in transmembrane helices as well as to determine the polarity of amphipathic helices in membrane proteins.  相似文献   

13.
An understanding of the folding states of α-helical membrane proteins in detergent systems is important for functional and structural studies of these proteins. Here, we present a rapid and simple method for identification of the folding topology and assembly of transmembrane helices using paramagnetic perturbation in nuclear magnetic resonance spectroscopy. By monitoring the perturbation of signals from glycine residues located at specific sites, the folding topology and the assembly of transmembrane helices of membrane proteins were easily identified without time-consuming backbone assignment. This method is validated with Mistic (membrane-integrating sequence for translation of integral membrane protein constructs) of known structure as a reference protein. The folding topologies of two bacterial histidine kinase membrane proteins (SCO3062 and YbdK) were investigated by this method in dodecyl phosphocholine (DPC) micelles. Combing with analytical ultracentrifugation, we identified that the transmembrane domain of YbdK is present as a parallel dimer in DPC micelle. In contrast, the interaction of transmembrane domain of SCO3062 is not maintained in DPC micelle due to disruption of native structure of the periplasmic domain by DPC micelle.  相似文献   

14.
Purification and Biochemical Characterization of the Lambda Holin   总被引:5,自引:4,他引:1       下载免费PDF全文
Holins are small phage-encoded cytoplasmic membrane proteins, remarkable for their ability to make membranes permeable in a temporally regulated manner. The purification of S105, the λ holin, and one of the two products of gene S is described. Because the wild-type S105 holin could be only partially purified from membrane extracts by ion-exchange chromatography, an oligohistidine tag was added internally to the S105 sequence for use in immobilized metal affinity chromatography. An acceptable site for the tag was found between residues 94 and 95 in the highly charged C-terminal domain of S. This allele, designated S105H94, had normal lysis timing under physiological expression conditions. The S105H94 protein was overproduced, purified, and characterized by circular dichroism spectroscopy, which revealed approximately 40% alpha-helix conformation, consistent with the presence of two transmembrane helices. The purified protein was then used to achieve release of fluorescent dye loaded in liposomes in vitro, whereas protein from an isogenic construct carrying an S mutation known to abolish hole formation was inactive in this assay. These results suggest that S is a bitopic membrane protein capable of forming aqueous holes in bilayers.  相似文献   

15.
Septation in Escherichia coli requires several gene products. One of these, FtsQ, is a simple bitopic membrane protein with a short cytoplasmic N terminus, a membrane-spanning segment, and a periplasmic domain. We have constructed a merodiploid strain that expresses both FtsQ and the fusion protein green fluorescent protein (GFP)-FtsQ from single-copy chromosomal genes. The gfp-ftsQ gene complements a null mutation in ftsQ. Fluorescence microscopy revealed that GFP-FtsQ localizes to the division site. Replacing the cytoplasmic and transmembrane domains of FtsQ with alternative membrane anchors did not prevent the localization of the GFP fusion protein, while replacing the periplasmic domain did, suggesting that the periplasmic domain is necessary and sufficient for septal targeting. GFP-FtsQ localization to the septum depended on the cell division proteins FtsZ and FtsA, which are cytoplasmic, but not on FtsL and FtsI, which are bitopic membrane proteins with comparatively large periplasmic domains. In addition, the septal localization of ZipA apparently did not require functional FtsQ. Our results indicate that FtsQ is an intermediate recruit to the division site.  相似文献   

16.
Cells have developed an incredible machinery to facilitate the insertion of membrane proteins into the membrane. While we have a fairly good understanding of the mechanism and determinants of membrane integration, more data is needed to understand the insertion of membrane proteins with more complex insertion and folding pathways. This review will focus on marginally hydrophobic transmembrane helices and their influence on membrane protein folding. These weakly hydrophobic transmembrane segments are by themselves not recognized by the translocon and therefore rely on local sequence context for membrane integration. How can such segments reside within the membrane? We will discuss this in the light of features found in the protein itself as well as the environment it resides in. Several characteristics in proteins have been described to influence the insertion of marginally hydrophobic helices. Additionally, the influence of biological membranes is significant. To begin with, the actual cost for having polar groups within the membrane may not be as high as expected; the presence of proteins in the membrane as well as characteristics of some amino acids may enable a transmembrane helix to harbor a charged residue. The lipid environment has also been shown to directly influence the topology as well as membrane boundaries of transmembrane helices—implying a dynamic relationship between membrane proteins and their environment.  相似文献   

17.
Formation of non-covalent functional complexes of integral membrane proteins is frequently supported by sequence-specific interaction of their transmembrane helices. Here, we aligned human single-span membrane proteins with orthologs from other eukaryotes. We find that almost half of the human single-span membrane proteins contain a transmembrane helix that exhibits significant non-random unilateral conservation. Furthermore, unilateral conservation of transmembrane domains (TMDs) correlates well with their ability to self-interact. Glycine, polar non-ionizable, and aromatic amino acids are overrepresented in conserved versus non-conserved helix faces. Hence, our genome-wide analysis indicates that these amino acid types generally support interaction of single-span membrane protein TMDs.  相似文献   

18.
The nature and distribution of amino acids in the helix interfaces of four polytopic membrane proteins (cytochrome c oxidase, bacteriorhodopsin, the photosynthetic reaction center of Rhodobacter sphaeroides, and the potassium channel of Streptomyces lividans) are studied to address the role of glycine in transmembrane helix packing. In contrast to soluble proteins where glycine is a noted helix breaker, the backbone dihedral angles of glycine in transmembrane helices largely fall in the standard alpha-helical region of a Ramachandran plot. An analysis of helix packing reveals that glycine residues in the transmembrane region of these proteins are predominantly oriented toward helix-helix interfaces and have a high occurrence at helix crossing points. Moreover, packing voids are generally not formed at the position of glycine in folded protein structures. This suggests that transmembrane glycine residues mediate helix-helix interactions in polytopic membrane proteins in a fashion similar to that seen in oligomers of membrane proteins with single membrane-spanning helices. The picture that emerges is one where glycine residues serve as molecular notches for orienting multiple helices in a folded protein complex.  相似文献   

19.
The BCL-2 family proteins constitute a critical control point in apoptosis. BCL-2 family proteins display structural homology to channel-forming bacterial toxins, such as colicins, transmembrane domain of diphtheria toxin, and the N-terminal domain of delta-endotoxin. By analogy, it has been hypothesized the BCL-2 family proteins would unfold and insert into the lipid bilayer upon membrane association. We applied the site-directed spin labeling method of electron paramagnetic resonance spectroscopy to the pro-apoptotic member BID. Here we show that helices 6-8 maintain an alpha-helical conformation in membranes with a lipid composition resembling mitochondrial outer membrane contact sites. However, unlike colicins and the transmembrane domain of diphtheria toxin, these helices of BID are bound to the lipid bilayer without adopting a transmembrane orientation. Our study presents a more detailed model for the reorganization of the structure of tBID on membranes.  相似文献   

20.
Binding of specific lipids to large, polytopic membrane proteins is well described, and it is clear that such lipids are crucial for protein stability and activity. In contrast, binding of defined lipid species to individual transmembrane helices and regulation of transmembrane helix monomer–oligomer equilibria by binding of distinct lipids is a concept, which has emerged only lately. Lipids bind to single-span membrane proteins, both in the juxta-membrane region as well as in the hydrophobic membrane core. While some interactions counteract transmembrane helix oligomerization, in other cases lipid binding appears to enhance oligomerization. As reversible oligomerization is involved in activation of many membrane proteins, binding of defined lipids to single-span transmembrane proteins might be a mechanism to regulate and/or fine-tune the protein activity. But how could lipid binding trigger the activity of a protein? How can binding of a single lipid molecule to a transmembrane helix affect the structure of a transmembrane helix oligomer, and consequently its signaling state? These questions are discussed in the present article based on recent results obtained with simple, single-span transmembrane proteins. This article is part of a Special Issue entitled: Lipid–protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号