首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Verdun RE  Karlseder J 《Cell》2006,127(4):709-720
Telomeres protect chromosome ends from being detected as lesions and from triggering DNA damage checkpoints. Paradoxically, telomere function depends on checkpoint proteins such as ATM and ATR, but a molecular model explaining this seemingly contradictory relationship has been missing so far. Here we show that the DNA damage machinery acts on telomeres in at least two independent steps. First, the ATR-dependent machinery is recruited to telomeres before telomere replication is completed, likely in response to single-stranded DNA resulting from replication fork stalling. Second, after replication, telomeres attract ATM and the homologous recombination (HR) machinery. In vivo and in vitro results suggest that the HR machinery is required for formation of a telomere-specific structure at chromosome ends after replication. Our results suggest that telomere ends need to be recognized as DNA damage to complete end replication and to acquire a structure that is essential for function.  相似文献   

2.
It is shown that the size, localization, and structure of telomeres in the Iberian shrew (Sorex granarius) are not characteristic of mammals. In this species, long telomeres of an average size of 213 kb are localized on the short arms of all 32 acrocentrics; ribosomal blocks and active nucleolus-organizing regions (NORs) were also discovered there. At the remaining chromosome ends the average size of telomeres is 3.8 kb. However, in a closely related species, Sorex araneus, all telomeres have size similar to that of human telomeres, i.e., 6.8–15.2 kb. Despite the fact that some long telomeres contain ribosomal repeats in addition to telomeric ones, the long telomeres have preserved asymmetry of G- and C-rich strands as in functional telomeres. It is probable that long telomeres were formed in meiosis at the stage of chromosome bouquet as a result of global reorganization of the chromosome ends. The provoking factors for such reorganization might be the fission of several metacentrics and the necessity of telomerization of the resulting acrocentrics.  相似文献   

3.
4.
Telomeres are protective caps for chromosome ends that are essential for genome stability. Broken chromosomes missing a telomere will not be maintained unless the chromosome is ‘healed’ with the formation of a new telomere. Chromosome healing can be a programmed event following developmentally regulated chromosome fragmentation, or it may occur spontaneously when a chromosome is accidentally broken. In this article we discuss the consequences of telomere loss and the possible mechanisms that the enzyme telomerase employs to form telomeres de novo on broken chromosome ends.  相似文献   

5.
Blagoev KB  Goodwin EH 《DNA Repair》2008,7(2):199-204
Telomerase-negative cancer cells show increased telomere sister chromatid exchange (T-SCE) rates, a phenomenon that has been associated with an alternative lengthening of telomeres (ALT) mechanism for maintaining telomeres in this subset of cancers. Here we examine whether or not T-SCE can maintain telomeres in human cells using a combinatorial model capable of describing how telomere lengths evolve over time. Our results show that random T-SCE is unlikely to be the mechanism of telomere maintenance of ALT human cells, but that increased T-SCE rates combined with a recently proposed novel mechanism of non-random segregation of chromosomes with long telomeres preferentially into the same daughter cell during cell division can stabilize chromosome ends in ALT cancers. At the end we discuss a possible experiment that can validate the findings of this study.  相似文献   

6.
Telomeres are specialized structures at the ends of linear chromosomes that were originally defined functionally based on observations first by Muller (1938) and subsequently by McClintock (1941) that naturally occurring chromosome ends do not behave as double-stranded DNA breaks, in spite of the fact that they are the physical end of a linear, duplex DNA molecule. Double-stranded DNA breaks are highly unstable entities, being susceptible to nucleolytic attack and giving rise to chromosome rearrangements through end-to-end fusions and recombination events. In contrast, telomeres confer stability upon chromosome termini, as evidenced by the fact that chromosomes are extraordinarily stable through multiple cell divisions and even across evolutionary time. This protective function of telomeres is due to the formation of a nucleoprotein complex that sequesters the end of the DNA molecule, rendering it inaccessible to nucleases and recombinases as well as preventing the telomere from activating the DNA damage checkpoint pathways. The capacity of a functional end-protective complex to form is dependent upon maintenance of sufficient telomeric DNA. We have learned a great deal about telomere structure and how this specialized nucleoprotein complex confers stability on chromosome ends since the original observations that defined telomeres were made. This review summarizes our current understanding of mammalian telomere replication, structure and function.  相似文献   

7.
Mammalian telomeres end in single-stranded, G-rich 3' overhangs resulting from both the "end-replication problem" (the inability of DNA polymerase to replicate the very end of the telomeres) and postreplication processing. Telomeric G-rich overhangs are precisely defined in ciliates; the length and the terminal nucleotides are fixed. Human telomeres have very long overhangs that are heterogeneous in size (35-600 nt), indicating that their processing must differ in some respects from model organisms. We developed telomere-end ligation protocols that allowed us to identify the terminal nucleotides of both the C-rich and the G-rich telomere strands. Up to approximately 80% of the C-rich strands terminate in CCAATC-5', suggesting that after replication a nuclease with high specificity or constrained action acts on the C strand. In contrast, the G-terminal nucleotide was less precise than Tetrahymena and Euplotes but still had a bias that changed as a function of telomerase expression.  相似文献   

8.
Telomeres were defined by their ability to cap chromosome ends. Proteins with high affinity for the structure at chromosome ends, binding the G-rich, 3' single-stranded overhang at telomeres include Pot1 in humans and fission yeast, TEBP in Oxytricha nova and Cdc13 in budding yeast. Cdc13 is considered essential for telomere capping because budding yeast that lack Cdc13 rapidly accumulate excessive single-stranded DNA (ssDNA) at telomeres, arrest cell division and die. Cdc13 has a separate, critical role in telomerase recruitment to telomeres. Here, we show that neither Cdc13 nor its partner Stn1 are necessary for telomere capping if nuclease activities that are active at uncapped telomeres are attenuated. Recombination-dependent and -independent mechanisms permit maintenance of chromosomes without Cdc13. Our results indicate that the structure of the eukaryotic telomere cap is remarkably flexible and that changes in the DNA damage response allow alternative strategies for telomere capping to evolve.  相似文献   

9.
10.
Telomeres are capping structures at the ends of chromosomes, composed of a repetitive DNA sequence and associated proteins. Both a minimal length of telomeric repeats and telomere-associated binding proteins are necessary for proper telomere function. Functional telomeres are essential for maintaining the integrity and stability of eukaryotic genomes. The capping structure enables cells to distinguish chromosome ends from double strand breaks (DSBs) in the genome. Uncapped chromosome ends are at great risk for degradation, recombination, or chromosome fusion by cellular DNA repair systems. Dysfunctional telomeres have been proposed to contribute to tumorigenesis and some aging phenotypes. The analysis of mice deficient in telomerase activity and other telomere-associated proteins has allowed the roles of dysfunctional telomeres in tumorigenesis and aging to be directly tested. Here we will focus on the analysis of different mouse models disrupted for proteins that are important for telomere functions and discuss known and proposed consequences of telomere dysfunction in tumorigenesis and aging.  相似文献   

11.
Hug N  Lingner J 《Chromosoma》2006,115(6):413-425
  相似文献   

12.
Eukaryotic chromosomes are linear and have their, ends formed by DNA-protein structures, telomeres. At present more and more facts demonstrate the diversity of telomere functions. Telomeres protect the chromosome ends from degradation, fusion, recombination, and from the repair system that recognizes nicks in DNA strands. As shown recently, shortening of the telomeres is a cause of cell aging. In most organisms, telomeres are elongated by means of a special ribonucleoprotein complex; however, in some insects this takes place by either gene conversion or transposition of mobile elements. Evolutionary relations between different types of telomeres are discussed.  相似文献   

13.
To learn more about the mechanism of de novo telomere synthesis, we have characterized the sequence and structure of newly synthesized telomeres from Euplotes crassus. E. crassus is a particularly useful organism for studying telomere synthesis because millions of telomeres are made in each cell at a well-defined time during the sexual stage of the life cycle. These newly synthesized telomeres are approximately 50 bp longer than mature macronuclear telomeres. We have investigated the structure of the newly synthesized telomeres and have found that they are much more heterogeneous in length than mature telomeres. Most of the heterogeneity is present on the G-rich strand, indicating that the length of this strand is rather loosely controlled. In contrast, the length of the C-rich strand is much less variable, suggesting that synthesis of this strand is the more precisely regulated step in telomere addition. The G-rich strand exhibits variability both in the total number of G4T4 repeats and in the identity of the terminal nucleotide. In most cases, the G-rich strnd extends beyond the C-rich strand to leave a 3' overhang. While the size of this overhang is variable, the median length is 10 nucleotides. This research provides the first detailed picture of a newly synthesized telomere and has allowed us to formulate a model to describe the various steps involved in de novo telomere synthesis.  相似文献   

14.
Human chromosome ends are protected by shelterin, an abundant six-subunit protein complex that binds specifically to the telomeric-repeat sequences, regulates telomere length, and ensures that chromosome ends do not elicit a DNA-damage response (reviewed in). Using mass spectrometry of proteins associated with the shelterin component Rap1, we identified an SMN1/PSO2 nuclease family member that is closely related to Artemis. We refer to this protein as Apollo and report that Apollo has the ability to localize to telomeres through an interaction with the shelterin component TRF2. Although its low abundance at telomeres indicates that Apollo is not a core component of shelterin, Apollo knockdown with RNAi resulted in senescence and the activation of a DNA-damage signal at telomeres as evidenced by telomere-dysfunction-induced foci (TIFs). The TIFs occurred primarily in S phase, suggesting that Apollo contributes to a processing step associated with the replication of chromosome ends. Furthermore, some of the metaphase chromosomes showed two telomeric signals at single-chromatid ends, suggesting an aberrant telomere structure. We propose that the Artemis-like nuclease Apollo is a shelterin accessory factor required for the protection of telomeres during or after their replication.  相似文献   

15.
16.
Tetrahymena telomeres usually consist of approximately 250 base pairs of T(2)G(4) repeats, but they can grow to reach a new length set point of up to 900 base pairs when kept in log culture at 30 degrees C. We have examined the growth profile of individual macronuclear telomeres and have found that the rate and extent of telomere growth are affected by the subtelomeric region. When the sequence of the rDNA subtelomeric region was altered, we observed a decrease in telomere growth regardless of whether the GC content was increased or decreased. In both cases, the ordered structure of the subtelomeric chromatin was disrupted, but the effect on the telomeric complex was relatively minor. Examination of the telomeres from non-rDNA chromosomes showed that each telomere exhibited a unique and characteristic growth profile. The subtelomeric regions from individual chromosome ends did not share common sequence elements, and they each had a different chromatin structure. Thus, telomere growth is likely to be regulated by the organization of the subtelomeric chromatin rather than by a specific DNA element. Our findings suggest that at each telomere the telomeric complex and subtelomeric chromatin cooperate to form a unique higher order chromatin structure that controls telomere length.  相似文献   

17.
The fission yeast Pot1 (protection of telomeres) protein binds to the single-stranded extensions at the ends of telomeres, where its presence is critical for the maintenance of linear chromosomes. Homologs of Pot1 have been identified in a wide variety of eukaryotes, including plants, animals, and humans. We now show that Pot1 plays dual roles in telomere length regulation and chromosome end protection. Using a series of Pot1 truncation mutants, we have defined distinct areas of the protein required for chromosome stability and for limiting access to telomere ends by telomerase. We provide evidence that a large portion of Pot1, including the N-terminal DNA binding domain and amino acids close to the C terminus, is essential for its protective function. C-terminal Pot1 fragments were found to exert a dominant-negative effect by displacing endogenous Pot1 from telomeres. Reducing telomere-bound Pot1 in this manner resulted in dramatic lengthening of the telomere tract. Upon further reduction of Pot1 at telomeres, the opposite phenotype was observed: loss of telomeric DNA and chromosome end fusions. Our results demonstrate that cells must carefully regulate the amount of telomere-bound Pot1 to differentiate between allowing access to telomerase and catastrophic loss of telomeres.  相似文献   

18.
Telomere structure allows cells to distinguish the natural chromosome ends from double-strand breaks (DSBs). However, DNA damage response proteins are intimately involved in telomere metabolism, suggesting that functional telomeres may be recognized as DNA damage during a time window. Here we show by two different systems that short telomeres are recognized as DSBs during the time of their replication, because they induce a transient MRX-dependent DNA damage checkpoint response during their prolonged elongation. The MRX complex, which is recruited at telomeres under these conditions, dissociates from telomeres concomitantly with checkpoint switch off when telomeres reach a new equilibrium length. We also show that MRX recruitment to telomeres is sufficient to activate the checkpoint independently of telomere elongation. We propose that MRX can signal checkpoint activation by binding to short telomeres only when they become competent for elongation. Because full-length telomeres are refractory to MRX binding and the shortest telomeres are elongated of only a few base pairs per generation, this limitation may prevent unscheduled checkpoint activation during an unperturbed S phase.  相似文献   

19.
A subset of human tumors ensures indefinite telomere length maintenance by activating a telomerase-independent mechanism known as Alternative Lengthening of Telomeres (ALT). Most tumor cells of ALT origin share a constellation of unique characteristics, which include large stores of extra-chromosomal telomeric material, chronic telomere dysfunction and a peculiar enrichment in chromosome ends with 5′ C-rich overhangs. Here we demonstrate that acute telomere de-protection and the subsequent DNA damage signal are not sufficient to facilitate formation of 5′ C-overhangs at the chromosome end. Rather chromosome ends bearing 5′ C-overhangs are a by-product of rapid cleavage events, processing of which occurs independently of the DNA damage response and is partly mediated through the XRCC3 endonuclease.  相似文献   

20.
Telomere attrition and other forms of telomere damage can activate the ATM kinase pathway. What generates the DNA damage signal at mammalian chromosome ends or at other double-strand breaks is not known. Telomere dysfunction is often accompanied by disappearance of the 3' telomeric overhang, raising the possibility that DNA degradation could generate the structure that signals. Here we address these issues by studying telomere structure after conditional deletion of mouse TRF2, the protective factor at telomeres. Upon removal of TRF2 from TRF2(F/-) p53-/- mouse embryo fibroblasts, a telomere damage response is observed at most chromosome ends. As expected, the telomeres lose the 3' overhang and are processed by the non-homologous end-joining pathway. Non-homologous end joining of telomeres was abrogated in DNA ligase IV-deficient (Lig4-/-) cells. Unexpectedly, the telomeres of TRF2-/- Lig4-/- p53-/- cells persisted in a free state without undergoing detectable DNA degradation. Notably, the telomeres retained their 3' overhangs, but they were recognized as sites of DNA damage, accumulating the DNA damage response factors 53BP1 and gamma-H2AX, and activating the ATM kinase. Thus, activation of the ATM kinase pathway at chromosome ends does not require overhang degradation or other overt DNA processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号