首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This Review focuses on recent advances in the field of cranial neural crest cell migration in Xenopus laevis with specific emphasis on cell adhesion and the regulation of cell migration. Our goal is to combine the understanding of cell adhesion to the extracellular matrix with the regulation of cell-cell adhesion and the involvement of the planar cell polarity signaling-pathway in guiding the migration of cranial neural crest cells during embryogenesis.Key words: neural crest, cell migration, extracellular matrix, cell adhesion, Wnt, planar cell polarity  相似文献   

2.
3.
Mesenchymal cell migration and neurite outgrowth are mediated in part by binding of cell surface beta 1,4-galactosyltransferase (GalTase) to N-linked oligosaccharides within the E8 domain of laminin. In this study, we determined whether cell surface GalTase functions during neural crest cell migration and neural development in vivo using antibodies raised against affinity-purified chicken serum GalTase. The antibodies specifically recognized two embryonic proteins of 77 and 67 kD, both of which express GalTase activity. The antibodies also immunoprecipitated and inhibited chick embryo GalTase activity, and inhibited neural crest cell migration on laminin matrices in vitro. Anti-GalTase antibodies were microinjected into the head mesenchyme of stage 7-9 chick embryos or cranial to Henson's node of stage 6 embryos. Anti-avian GalTase IgG decreased cranial neural crest cell migration on the injected side but did not cross the embryonic midline and did not affect neural crest cell migration on the uninjected side. Anti-avian GalTase Fab crossed the embryonic midline and perturbed cranial neural crest cell migration throughout the head. Neural fold elevation and neural tube closure were also disrupted by Fab fragments. Cell surface GalTase was localized to migrating neural crest cells and to the basal surfaces of neural epithelia by indirect immunofluorescence, whereas GalTase was undetectable on neural crest cells prior to migration. These results suggest that, during early embryogenesis, cell surface GalTase participates during neural crest cell migration, perhaps by interacting with laminin, a major component of the basal lamina. Cell surface GalTase also appears to play a role in neural tube formation, possibly by mediating neural epithelial adhesion to the underlying basal lamina.  相似文献   

4.
5.
An increasing number of genes are known to show expression in the cranial neural crest area. So far it is very difficult to analyze their effect on neural crest cell migration because of the lack of transplantation techniques. This paper presents a simple method to study the migratory behavior of cranial neural crest cells by homo- and heterotopic transplantations: Green fluorescent protein (GFP) RNA was injected into one blastomere of Xenopus laevis embryos at the 2-cell stage. The cranial neural crest area of stage 14 embryos was transplanted into the head or trunk region of an uninjected host embryo, and the migration was monitored by GFP fluorescence. The transplants were further examined by double immunostaining and confocal microscopy to trace migratory routes inside the embryo, and to exclude contaminations of grafts with foreign tissues. Our results demonstrate that we developed a highly efficient and reproducible technique to study the migratory ability of cranial neural crest cells. It offers the possibility to analyze genes involved in neural crest cell migration by coinjecting their RNA with that of GFP. Received: 28 September 1999 / Accepted: 17 November 1999  相似文献   

6.
During early embryonic development, cranial neural crest cells emerge from the developing mid- and hindbrain. While numerous studies have focused on integrin involvement in trunk neural crest cell migration, comparatively little is known about mechanisms of cranial neural crest cell migration. We show that fibronectin, but not laminin, vitronectin, or type I collagen can support cranial neural crest cell migration and segmentation in vitro. These behaviors require both the RGD and "synergy" sites located within the central cell-binding domain of fibronectin. While these two sites are sufficient for cranial neural crest cell migration, we find that the second Heparin-binding domain of fibronectin can provide additional support for cranial neural crest cell migration in vitro. Finally, using a function blocking monoclonal antibody, we show that cranial neural crest cell migration on fibronectin requires the integrin alpha5beta1.  相似文献   

7.
The neural crest is a highly migratory cell population, unique to vertebrates, that forms much of the craniofacial skeleton and peripheral nervous system. In exploring the cell biological basis underlying this behavior, we have identified an unconventional myosin, myosin-X (Myo10) that is required for neural crest migration. Myo10 is highly expressed in both premigratory and migrating cranial neural crest (CNC) cells in Xenopus embryos. Disrupting Myo10 expression using antisense morpholino oligonucleotides leads to impaired neural crest migration and subsequent cartilage formation, but only a slight delay in induction. In vivo grafting experiments reveal that Myo10-depleted CNC cells migrate a shorter distance and fail to segregate into distinct migratory streams. Finally, in vitro cultures and cell dissociation-reaggregation assays suggest that Myo10 may be critical for cell protrusion and cell-cell adhesion. These results demonstrate an essential role for Myo10 in normal cranial neural crest migration and suggest a link to cell-cell interactions and formation of processes.  相似文献   

8.
The possible role of a 140-kD cell surface complex in neural crest adhesion and migration was examined using a monoclonal antibody JG22, first described by Greve and Gottlieb (1982, J. Cell. Biochem. 18:221-229). The addition of JG22 to neural crest cells in vitro caused a rapid change in morphology of cells plated on either fibronectin or laminin substrates. The cells became round and phase bright, often detaching from the dish or forming aggregates of rounded cells. Other tissues such as somites, notochords, and neural tubes were unaffected by the antibody in vitro even though the JG22 antigen is detectable in embryonic tissue sections on the surface of the myotome, neural tube, and notochord. The effects of the JG22 on neural crest migration in vivo were examined by a new perturbation approach in which both the antibody and the hybridoma cells were microinjected onto neural crest pathways. Hybridoma cells were labeled with a fluorescent cell marker that is nondeleterious and that is preserved after fixation and tissue sectioning. The JG22 antibody and hybridoma cells caused a marked reduction in cranial neural crest migration, a build-up of neural crest cells within the lumen of the neural tube, and some migration along aberrant pathways. Neural crest migration in the trunk was affected to a much lesser extent. In both cranial and trunk regions, a cell free zone of one or more cell diameters was generally observed between neural crest cells and the JG22 hybridoma cells. Two other monoclonal antibodies, 1-B and 1-N, were used as controls. Both 1-B and 1-N bind to bands of the 140-kD complex precipitated by JG22. Neither control antibody affected neural crest adhesion in vitro or neural crest migration in situ. This suggests that the observed alterations in neural crest migration are due to a functional block of the 140-kD complex.  相似文献   

9.

Background

Collective neural crest cell migration is critical to the form and function of the vertebrate face and neck, distributing bone, cartilage, and nerve cells into peripheral targets that are intimately linked with head vasculature. The vasculature and neural crest structures are ultimately linked, but when and how these patterns develop in the early embryo are not well understood.

Results

Using in vivo imaging and sophisticated cell behavior analyses, we show that quail cranial neural crest and endothelial cells share common migratory paths, sort out in a dynamic multistep process, and display multiple types of motion. To better understand the underlying molecular signals, we examined the role of angiopoietin 2 (Ang2), which we found expressed in migrating cranial neural crest cells. Overexpression of Ang2 causes neural crest cells to be more exploratory as displayed by invasion of off-target locations, the widening of migratory streams into prohibitive zones, and differences in cell motility type. The enhanced exploratory phenotype correlates with increased phosphorylated focal adhesion kinase activity in migrating neural crest cells. In contrast, loss of Ang2 function reduces neural crest cell exploration. In both gain and loss of function of Ang2, we found disruptions to the timing and interplay between cranial neural crest and endothelial cells.

Conclusions

Together, these data demonstrate a role for Ang2 in maintaining collective cranial neural crest cell migration and suggest interdependence with endothelial cell migration during vertebrate head patterning.
  相似文献   

10.
The neural crest (NC) is a stem cell-like population that arises at the border of neural and non-neural ectoderm. During development, NC undergoes an epithelio-mesenchymal transition (EMT), i.e. loss of epithelial junctions and acquisition of pro-migratory properties, invades the entire embryo and differentiates into a wide diversity of terminal tissues. We have studied the implication of Rho pathways in NC development and previously showed that RhoV is required for cranial neural crest (CNC) cell specification. We show here that the non-canonical Wnt response rhoU/wrch1 gene, closely related to rhoV, is also expressed in CNC cells but at later stages. Using both gain- and loss-of-function experiments, we demonstrate that the level of RhoU expression is critical for CNC cell migration and subsequent differentiation into craniofacial cartilages. In in vitro cultures, RhoU activates pathways that cooperate with PAK1 and Rac1 in epithelial adhesion, cell spreading and directional cell migration. These data support the conclusion that RhoU is an essential regulator of CNC cell migration.  相似文献   

11.
Members of the plexin protein family are known regulators of axon guidance, but recent data indicate that they have broader functions in the regulation of embryonic morphogenesis. Here we provide further evidence of this by showing that PlexinA1 is expressed in Xenopus neural crest cells and is required for their migration. PlexinA1 expression is detected in migrating cranial neural crest cells and knockdown of PlexinA1 expression using Morpholino oligonucleotides inhibits neural crest migration. PlexinA1 likely affects neural crest migration by interaction with PTK7, a regulator of planar cell polarity that is required for neural crest migration. PlexinA1 and PTK7 interact in immunoprecipitation assays and show phenotypic interaction in co-injection experiments. Considering that plexins and PTK7 have been shown to genetically interact in Drosophila axon guidance and chick cardiac morphogenesis, our data suggest that this interaction is evolutionary conserved and may be relevant for a broad range of morphogenetic events including the migration of neural crest cells in Xenopus laevis.  相似文献   

12.
Craniofacial and ocular morphogenesis require proper regulation of cranial neural crest migration, proliferation, survival and differentiation. Although alterations in maternal thyroid hormone (TH) are associated with congenital craniofacial anomalies, the role of TH on the neural crest has not been previously described. Using zebrafish, we demonstrate that pharmacologic and genetic alterations in TH signaling disrupt cranial neural crest migration, proliferation, and survival, leading to craniofacial, extraocular muscle, and ocular developmental abnormalities. In the rostral cranial neural crest that gives rise to the periocular mesenchyme and the frontonasal process, retinoic acid (RA) rescued migratory defects induced by decreased TH signaling. In the caudal cranial neural crest, TH and RA had reciprocal effects on anterior and posterior pharyngeal arch development. The interactions between TH and RA signaling were partially mediated by the retinoid X receptor. We conclude that TH regulates both rostral and caudal cranial neural crest. Further, coordinated interactions of TH and RA are required for proper craniofacial and ocular development.  相似文献   

13.
Neural crest cells are remarkable in their extensive and stereotypic patterns of migration. The pathways of neural crest migration have been documented by cell marking techniques, including interspecific neural tube grafts, immunocytochemistry and Dil-labelling. In the trunk, neural crest cells migrate dorsally under the skin or ventrally through the somites, where they move in a segmental fashion through the rostral half of each sclerotome. The segmental migration of neural crest cells appears to be prescribed by the somites, perhaps by an inhibitory cue from the caudal half. Within the rostral sclerotome, neural crest cells fill the available space except for a region around the notochord, suggesting the notochord may inhibit neural crest cells in its vicinity. In the cranial region, antibody perturbation experiments suggest that multiple cell-matrix interactions are required for proper in vivo migration of neural crest cells. Neural crest cells utilize integrin receptors to bind to a number of extracellular matrix molecules. Substrate selective inhibition of neural crest cell attachment in vitro by integrin antibodies and antisense oligonucleotides has demonstrated that they possess at least three integrins, one being an α1β1 integrin which functions in the absence of divalent cations. Thus, neural crest cells utilize complex sets of interactions which may differ at different axial levels.  相似文献   

14.
Regulation is a significant developmental event because successful cell proliferation and migration are critical to shaping young embryos. Regulation -- the replacement of undifferentiated embryonic cells by other cells in response to signals received from the environment -- is distinct from wound healing and regeneration. Investigations on regulation of neural crest cells span all vertebrates and have revealed that regulative ability varies both among classes (even species), and spatially and temporally within individuals. In general, there is greatest regulation for cranial neural crest cells, less for trunk, and virtually none forcardiac. Regulation also appears to be more complete at early embryonic stages. Fate-mapping studies have demonstrated that large regions of neural crest cells must be removed to generate missing or morphologically reduced structures. Recent studies reveal that less extensive neural crest cell extirpations result in normal morphology of cartilaginous and neuronal elements in the head, and normal development of pigmentation in the trunk. Ablation of cardiac neural crest cells frequently generates abnormalities of the heart, great vessels and parasympathetic nerve innervation. Decreased cell death, increased division, change in fate and altered migration are possible cellular mechanisms of regulation. In mostcases, the specific mechanisms of regulation are unknown, but a major premise underlying regulation is that cell potential is greater than cell fate. This concept was born from studies which demonstrated that some cells were able to express alternative fates if transplanted to a new environment. Among the potential cellular mechanisms for regulation, cell migration has received the most attention. Following ablation of neural crest cells, replacement neural crest cells migrate into gaps, most frequently from anterior/posterior locations. Cells from surrounding epidermal and neural ectoderm may have limited regulative ability, while compensation by cells from the ventral neural tube has been demonstrated to an even lesser extent. Regulation by such non-crest cells would require their transformation into neural crest cells. The potential for regulation of neural crest by placodal cells supports a closer relationship between neural crest and placodal ectoderm than previously recognized. Decreased cell death has been discussed primarily with reference to (1) cranial ganglia that have dual contributions from neural crest and placodal cells and (2) programmed cell death in rhombomeres three and five. Increased cell division in response to neural crest ablation is likely more common than has been reported, but this mechanism is difficult to interpret without a 3-D context for viewing how patterns of division differ from normal. Lastly, changes in cell fate may be the driving factor in regulation of embryonic cells. It has been repeatedly demonstrated thatcell potential is greaterthan cell fate. Once reliable mechanisms for assessing cell potential are established, we may find that fates are commonly altered in response to environmental signals. Regulation is therefore significant both as a basic developmental mechanism and as a mechanism for evolutionary change. The more labile the fate of embryonic cells, the more potential there is for maintaining existing characters and for generating new ones. According to Ettensohn (1992, p. 50), further analysis of such systems might . With regard to the neural crest, studies on regulation of this vital population of cells provide insight to the origin of the neural crest, to embryonic repair, and to the source of many craniofacial malformations, heart and other embryonic defects. (ABSTRACT TRUNCATED)  相似文献   

15.
We have examined the distribution and function of the defined cell adhesion molecules, N-cadherin and N-CAM, in the emigration of cranial neural crest cells from the neural tube in vivo. By immunocytochemical analysis, both N-cadherin and N-CAM were detected on the cranial neural folds prior to neural tube closure. After closure of the neural tube, presumptive cranial neural crest cells within the dorsal aspect of the neural tube had bright N-CAM and weak N-cadherin immunoreactivity. By the 10- to 11-somite stage, N-cadherin was prominent on all neural tube cells with the exception of the dorsal-most cells, which had little or no detectable immunoreactivity. N-CAM, but not N-cadherin, was observed on some migrating neural crest cells after their departure from the cranial neural tube. To examine the functional significance of these molecules, perturbation experiments were performed by injecting antibodies against N-CAM or N-cadherin into the cranial mesenchyme adjacent to the midbrain. Fab' fragments or whole IgGs of monoclonal and polyclonal antibodies against N-CAM caused abnormalities in the cranial neural tube and neural crest. Predominantly observed defects included neural crest cells in ectopic locations, both within and external to the neural tube, and mildly deformed neural tubes containing some dissociating cells. A monoclonal antibody against N-cadherin also disrupted cranial development, with the major defect being grossly distorted neural tubes and some ectopic neural crest cells outside of the neural tube. In contrast, nonblocking N-CAM antibodies and control IgGs had few effects. Embryos appeared to be sensitive to the N-CAM and N-cadherin antibodies for a limited developmental period from the neural fold to the 9-somite stage, with older embryos no longer displaying defects after antibody injection. These results suggest that the cell adhesion molecules N-CAM and N-cadherin are important for the normal integrity of the cranial neural tube and for the emigration of neural crest cells. Because cell-matrix interactions also are required for proper emigration of cranial neural crest cells, the results suggest that the balance between cell-cell and cell-matrix adhesion may be critical for this process.  相似文献   

16.
Perturbation of cranial neural crest migration by the HNK-1 antibody   总被引:15,自引:0,他引:15  
The HNK-1 antibody recognizes a carbohydrate moiety that is shared by a family of cell adhesion molecules and is also present on the surface of migrating neural crest cells. Here, the effects of the HNK-1 antibody on neural crest cells were examined in vitro and in vivo. When the HNK-1 antibody was added to neural tube explants in tissue culture, neural crest cells detached from laminin substrates but were unaffected on fibronectin substrates. In order to examine the effects of the HNK-1 antibody in vivo, antibody was injected lateral to the mesencephalic neural tube at the onset of cranial neural crest migration. The injected antibody persisted for approximately 16 hr on the injected side of the embryo and appeared to be most prevalent on the surface of neural crest cells. Embryos fixed within the first 24 hr after injection of HNK-1 antibodies (either whole IgMs or small IgM fragments) showed one or more of the following abnormalities: (1) ectopic neural crest cells external to the neural tube, (2) an accumulation of neural crest cell volume on the lumen of the neural tube, (3) some neural tube anomalies, or (4) a reduction in the neural crest cell volume on the injected side. The ectopic cells and neural tube anomalies persisted in embryos fixed 2 days postinjection. Only embryos having 10 or less somites at the time of injection were affected, suggesting a limited period of sensitivity to the HNK-1 antibody. Control embryos injected with a nonspecific antibody or with a nonblocking antibody against the neural cell adhesion molecule (N-CAM) were unaffected. Previous experiments from this laboratory have demonstrated than an antibody against integrin, a fibronectin and laminin receptor caused defects qualitatively similar to those resulting from HNK-1 antibody injection (M. Bronner-Fraser, J. Cell Biol., 101, 610, 1985). Coinjection of the HNK-1 and integrin antibodies resulted in a greater percentage of affected embryos than with either antibody alone. The additive nature of the effects of the two antibodies suggests that they act at different sites. These results demonstrate that the HNK-1 antibody causes abnormalities in cranial neural crest migration, perhaps by perturbing interactions between neural crest cells and laminin substrates.  相似文献   

17.
目的 初步探讨PTEN基因在早期神经嵴细胞迁移中的作用.方法 首先胚胎整体的原位杂交和免疫荧光方法检测鸡胚胎内源性的PTEN基因及蛋白水平的表达情况;其次,利用鸡胚胎体内半侧神经管转染的方法,使神经管一侧PTEN基因过表达,对侧神经管为正常对照侧;最后,通过Pax7的整体胚胎免疫荧光表达观察PTEN基因对其标记的部分神经嵴细胞迁移的影响.结果 内源性PTEN基因在mRNA和蛋白水平表达显示,其在早期胚胎HH4期的神经板即开始明显的表达;通过半侧过表达PTEN基因后观察到过表达PTEN基因侧的头部神经嵴细胞迁移与对照侧相比明显受到抑制,但对躯干部的影响并不明显.结论 PTEN基因可能抑制早期胚胎头部神经嵴细胞的迁移.  相似文献   

18.
Studies on cell behaviour in vitro have indicated that the chondroitin sulphate proteoglycan (CSPG) family of molecules can participate in the control of cell proliferation, differentiation and adhesion, but its morphogenetic functions had not been investigated in intact embryos. Chondroitin/chondroitin sulphates have been identified in rat embryos at low levels at the start of neurulation (day 9) and at much higher levels on day 10. In this study we have sought evidence for the morphogenetic functions of CSPGs in rat embryos during the period of neurulation and neural crest cell migration by a combination of two approaches: immunocytochemical localization of CSPG by means of an antibody, CS-56, to the chondroitin sulphate component of CSPG, and exposure of embryos to the enzyme chondroitinase ABC. Staining of the CS-56 epitope was poor at the beginning of cranial neurulation; bright staining was at first confined to the primary mesenchyme under the convex neural folds late on day 9. In day 10 embryos, all mesenchyme cells were stained, but at different levels of intensity, so that primary mesenchyme, neural crest and sclerotomal cells could be distinguished from each other. Basement membranes were also stained, particularly bright staining being present where two epithelial were basally apposed, e.g., neural/surface ectoderms, dorsal aorta/neural tube, prior to migration of a population of cells between them. Staining within the neural epithelium was first confined to the dorsolateral edge region, and associated with the onset of neural crest cell emigration; after neural tube closure, neuroepithelial staining was more general. Neural crest cells were stained during migration, but the reaction was absent in areas associated with migration end-points (trigeminal ganglion anlagen, frontonasal mesenchyme). Embryos exposed to chondroitinase ABC in culture showed no abnormalities until early day 10, when cranial neural crest cell emigration from the neural epithelium was inhibited and neural tube closure was retarded. Sclerotomal cells failed to take their normal pathway between the dorsal aorta and neural tube. Correlation of the results of these two methods suggests: (1) that by decreasing adhesiveness within the neural epithelium at specific stages, CSPG facilitates the emigration of neural crest cells and the migratory movement of neuroblasts, and may also provide increased flexibility during the generation of epithelial curvatures; (2) that by decreasing the adhesiveness of fibronectin-containing extracellular matrices, CSPG facilitates the migration of neural crest and sclerotomal cells. This second function is particularly important when migrating cells take pathways between previously apposed tissues.  相似文献   

19.
The vertebrate neural crest is a population of migratory cells that originates in the dorsal aspect of the embryonic neural tube. These cells undergo an epithelial-to-mesencyhmal transition (EMT), delaminate from the neural tube and migrate extensively to generate an array of differentiated cell types. Elucidating the gene regulatory networks involved in neural crest cell induction, migration and differentiation are thus crucial to understanding vertebrate development. To this end, we have identified Annexin A6 as an important regulator of chick midbrain neural crest cell emigration. Annexin proteins comprise a family of calcium-dependent, membrane-binding molecules that mediate a variety of cellular and physiological processes including cell adhesion, migration and invasion. Our data indicate that Annexin A6 is expressed in the proper spatio-temporal pattern in the chick midbrain to play a potential role in neural crest cell ontogeny. To investigate Annexin A6 function, we have depleted or overexpressed Annexin A6 in the developing midbrain neural crest cell population. Our results show that knock-down or overexpression of Annexin A6 reduces or expands the migratory neural crest cell domain, respectively. Importantly, this phenotype is not due to any change in cell proliferation or cell death but can be correlated with changes in the size of the premigratory neural crest cell population and with markers associated with EMT. Taken together, our data indicate that Annexin A6 plays a pivotal role in modulating the formation of cranial migratory neural crest cells during vertebrate development.  相似文献   

20.
Vertebrates possess paired cranial sensory ganglia derived from two embryonic cell populations, neural crest and placodes. Cranial sensory ganglia arose prior to the divergence of jawed and jawless vertebrates, but the developmental mechanisms that facilitated their evolution are unknown. Using gene expression and cell lineage tracing experiments in embryos of the sea lamprey, Petromyzon marinus, we find that in the cranial ganglia we targeted, development consists of placode‐derived neuron clusters in the core of ganglia, with neural crest cells mostly surrounding these neuronal clusters. To dissect functional roles of neural crest and placode cell associations in these developing cranial ganglia, we used CRISPR/Cas9 gene editing experiments to target genes critical for the development of each population. Genetic ablation of SoxE2 and FoxDA in neural crest cells resulted in differentiated cranial sensory neurons with abnormal morphologies, whereas deletion of DlxB in cranial placodes resulted in near‐total loss of cranial sensory neurons. Taken together, our cell‐lineage, gene expression, and gene editing results suggest that cranial neural crest cells may not be required for cranial ganglia specification but are essential for shaping the morphology of these sensory structures. We propose that the association of neural crest and placodes in the head of early vertebrates was a key step in the organization of neurons and glia into paired sensory ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号