首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells sense the rigidity of their environment and respond to it. Most studies have been focused on the role of adhesion complexes in rigidity sensing. In particular, it has been clearly shown that proteins of the adhesion complexes were stretch-sensitive and could thus trigger mechano-chemical signaling in response to applied forces. In order to understand how this local mechano-sensitivity could be coordinated at the cell scale, we have recently carried out single cell traction force measurements on springs of varying stiffness. We found that contractility at the cell scale (force, speed of contraction, mechanical power) was indeed adapted to external stiffness and reflected ATPase activity of non-muscle myosin II and acto-myosin response to load. Here we suggest a scenario of rigidity sensing where local adhesions sensitivity to force could be coordinated by adaptation of the acto-myosin dependent cortical tension at the global cell scale. Such a scenario could explain how spreading and migration are oriented by the rigidity of the cell environment.Key words: single cell, mechano-sensing, mechano-transduction, contractility, spreading, polarization  相似文献   

2.
Adherent cells normally apply forces as a generic means of sensing and responding to the mechanical nature of their surrounding environment. How these forces vary as a function of the extracellular rigidity is critical to understanding the regulatory functions that drive important phenomena such as wound healing or muscle contraction. In recognition of this fact, experiments have been conducted to understand cell rigidity-sensing properties under known conditions of the extracellular environment, opening new possibilities for modeling this active behavior. In this work, we provide a physics-based constitutive model taking into account the main structural components of the cell to reproduce its most significant contractile properties such as the traction forces exerted as a function of time and the extracellular stiffness. This model shows how the interplay between the time-dependent response of the acto-myosin contractile system and the elastic response of the cell components determines the mechano-sensing behavior of single cells.  相似文献   

3.
ABSTRACT

Many physiological and pathological processes involve tissue cells sensing the rigidity of their environment. In general, tissue cells have been shown to react to the stiffness of their environment by regulating their level of contractility, and in turn applying traction forces on their environment to probe it. This mechanosensitive process can direct early cell adhesion, cell migration and even cell differentiation. These processes require the integration of signals over time and multiple length scales. Multiple strategies have been developed to understand force- and rigidity-sensing mechanisms and much effort has been concentrated on the study of cell adhesion complexes, such as focal adhesions, and cell cytoskeletons. Here, we review the major biophysical methods used for measuring cell-traction forces as well as the mechanosensitive processes that drive cellular responses to matrix rigidity on 2-dimensional substrates.  相似文献   

4.
We investigate the dynamic response of single cells to weak and local rigidities, applied at controlled adhesion sites. Using multiple latex beads functionalized with fibronectin, and each trapped in its own optical trap, we study the reaction in real time of single 3T3 fibroblast cells to asymmetrical tensions in the tens of pN · μm−1 range. We show that the cell feels a rigidity gradient even at this low range of tension, and over time develops an adapted change in the force exerted on each adhesion site. The rate at which force increases is proportional to trap stiffness. Actomyosin recruitment is regulated in space and time along the rigidity gradient, resulting in a linear relationship between the amount of recruited actin and the force developed independently in trap stiffness. This time-regulated actomyosin behavior sustains a constant and rigidity-independent velocity of beads inside the traps. Our results show that the strengthening of extracellular matrix-cytoskeleton linkages along a rigidity gradient is regulated by controlling adhesion area and actomyosin recruitment, to maintain a constant deformation of the extracellular matrix.  相似文献   

5.
This study aims at improving the understanding of mechanisms responsible for cell sensitivity to extracellular environment. We explain how substrate mechanical properties can modulate the force regulation of cell sensitive elements primarily adhesion sites. We present a theoretical and experimental comparison between two radically different approaches of the force regulation of adhesion sites that depends on their either stationary or dynamic behavior. The most classical stationary model fails to predict cell sensitivity to substrate stiffness whereas the dynamic model predicts extracellular stiffness dependence. This is due to a time dependent reaction force in response to actomyosin traction force exerted on cell sensitive elements. We purposely used two cellular models, i.e., alveolar epithelial cells and alveolar macrophages exhibiting respectively stationary and dynamic adhesion sites, and compared their sensitivity to theoretical predictions. Mechanical and structural results show that alveolar epithelial cells exhibit significant prestress supported by evident stress fibers and lacks sensitivity to substrate stiffness. On the other hand, alveolar macrophages exhibit low prestress and exhibit sensitivity to substrate stiffness. Altogether, theory and experiments consistently show that adhesion site dynamics and cytoskeleton prestress control cell sensitivity to extracellular environment with an optimal sensitivity expected in the intermediate range.  相似文献   

6.
Durotaxis refers to the phenomenon in which cells can sense the spatial gradient of the substrate rigidity in the process of cell migration. A conceptual two-part theory consisting of the focal adhesion force generation and mechanotransduction has been proposed previously by Lo et al. to explain the mechanism underlying durotaxis. In the present work, we are concerned with the first part of the theory: how exactly is the larger focal adhesion force generated in the part of the cell adhering to the stiffer region of the substrate? Using a simple elasticity model and by assuming the cell adheres to the substrate continuously underneath the whole cell body, we show that the mechanics principle of static equilibrium alone is sufficient to account for the generation of the larger traction stress on the stiffer region of the substrate. We believe that our model presents a simple mechanistic understanding of mechanosensing of substrate stiffness gradient at the cellular scale, which can be incorporated in more sophisticated mechanobiochemical models to address complex problems in mechanobiology and bioengineering.  相似文献   

7.
Migration of cells is one of the most essential prerequisites to form higher organisms and depends on a strongly coordinated sequence of processes. Early migratory events include substrate sensing, adhesion formation, actin bundle assembly and force generation. While substrate sensing was ascribed to filopodia, all other processes were believed to depend mainly on lamellipodia of migrating cells. In this work we show for motile keratinocytes that all processes from substrate sensing to force generation strongly depend on filopodial focal complexes as well as on filopodial actin bundles. In a coordinated step by step process, filopodial focal complexes have to be tightly adhered to the substrate and to filopodial actin bundles to enlarge upon lamellipodial contact forming classical focal adhesions. Lamellipodial actin filaments attached to those focal adhesions originate from filopodia. Upon cell progression, the incorporation of filopodial actin bundles into the lamellipodium goes along with a complete change in actin cross-linker composition from filopodial fascin to lamellipodial α-actinin. α-Actinin in turn is replaced by myosin II and becomes incorporated directly behind the leading edge. Myosin II activity makes this class of actin bundles with their attached FAs the major source of force generation and transmission at the cell front. Furthermore, connection of FAs to force generating actin bundles leads to their stabilization and further enlargement. Consequently, adhesion sites formed independently of filopodia are not connected to detectable actin bundles, transmit weak forces to the substrate and disassemble within a few minutes without having been increased in size.Key words: filopodia, focal complexes, cell migration, focal adhesion, myosin II, force, actin flow, maturation  相似文献   

8.
Migration of cells is one of the most essential prerequisites to form higher organisms and depends on a strongly coordinated sequence of processes. Early migratory events include substrate sensing, adhesion formation, actin bundle assembly and force generation. While substrate sensing was ascribed to filopodia, all other processes were believed to depend mainly on lamellipodia of migrating cells. In this work we show for motile keratinocytes that all processes from substrate sensing to force generation strongly depend on filopodial focal complexes as well as on filopodial actin bundles. In a coordinated step by step process filopodial focal complexes have to be tightly adhered to the substrate and to filopodial actin bundles to enlarge upon lamellipodial contact forming classical focal adhesions. Lamellipodial actin filaments attached to those focal adhesions originate from filopodia. Upon cell progression, the incorporation of filopodial actin bundles into the lamellipodium goes along with a complete change in actin cross-linker composition from filopodial fascin to lamellipodial α-actinin. α-Actinin in turn is replaced by myosin II and becomes incorporated directly behind the leading edge. Myosin II activity makes this class of actin bundles with their attached FAs the major source of force generation and transmission at the cell front. Furthermore, connection of FAs to force generating actin bundles leads to their stabilization and further enlargement. Consequently, adhesion sites formed independently of filopodia are not connected to detectable actin bundles, transmit weak forces to the substrate and disassemble within a few minutes without having been increased in size.  相似文献   

9.
A major form of animal cell-cell adhesion results from the dynamic association of cadherin molecules, cytosolic catenins and actin microfilaments. Cadherins dynamically regulate the cytoskeleton. In turn, the actin cytoskeleton contributes to cadherin molecule oligomerization at cell contacts and to cell reshaping in response to environmental changes. Over the past two years, this evolutionarily conserved adhesion system has been intensively revisited in both its structural and functional aspects; this is illustrated by the remarkable progress in the determination of physical parameters of cadherin bonds (including force measurement) and the new insights into the role of alpha-catenin and the regulation of actin dynamics at cadherin contacts. Other recent studies uncover the important contribution of acto-myosin, microtubules and cell tension to adherens junction formation, cell differentiation and tissue reshaping/remodeling. An open challenge is now to integrate these new data with the diversity of cadherin adhesive complexes.  相似文献   

10.
Cells require optimal substrate stiffness for normal function and differentiation. The mechanisms for sensing matrix rigidity and durotaxis, however, are not clear. Here we showed that control, Shp2-/-, integrin beta1-/-, and talin1-/- cell lines all spread to a threefold greater area on fibronectin (FN)-coated rigid polyacrylamide surfaces than soft. In contrast, RPTPalpha-/- cells spread to the same area irrespective of rigidity on FN surfaces but spread 3x greater on rigid collagen IV-coated surfaces than soft. RPTPalpha and alphavbeta3 integrins were shown previously to be colocalized at leading edges and antibodies to alphavbeta3 blocked FN rigidity sensing. When FN beads were held with a rigid laser trap at the leading edge, stronger bonds to the cytoskeleton formed than when held with a soft trap; whereas back from the leading edge and in RPTPalpha-/- cells, weaker bonds were formed with both rigid and soft laser traps. From the rigidity of the trap, we calculate that a force of 10 pN generated in 1 s is sufficient to activate the rigidity response. We suggest that RPTPalpha and alphavbeta3 at the leading edge are critical elements for sensing FN matrix rigidity possibly through SFK activation at the edge and downstream signaling.  相似文献   

11.
Extracellular stiffness has been shown to alter long timescale cell behaviors such as growth and differentiation, but the cellular response to changes in stiffness on short timescales is poorly understood. By studying the contractile response of cells to dynamic stiffness conditions using an atomic force microscope, we observe a seconds-timescale response to a step change in extracellular stiffness. Specifically, we observe acceleration in contraction velocity (μm/min) and force rate (nN/min) upon a step decrease in stiffness and deceleration upon a step increase in stiffness. Interestingly, this seconds-timescale response to a change in extracellular stiffness is not altered by inhibiting focal adhesion signaling or stretch-activated ion channels and is independent of cell height and contraction force. Rather, the response timescale is altered only by disrupting cytoskeletal mechanics and is well described by a simple mechanical model of a constant velocity actuator pulling against an internal cellular viscoelastic network. Consistent with the predictions of this model, we find that an osmotically expanding hydrogel responds to step changes in extracellular stiffness in a similar manner to cells. We therefore propose that an initial event in stiffness sensing is establishment of a mechanical equilibrium that balances contraction of the viscoelastic cytoskeleton with deformation of the extracellular matrix.  相似文献   

12.
Adherent cells generate forces through acto-myosin contraction to move, change shape, and sense the mechanical properties of their environment. They are thought to maintain defined levels of tension with their surroundings despite mechanical perturbations that could change tension, a concept known as tensional homeostasis. Misregulation of tensional homeostasis has been proposed to drive disorganization of tissues and promote progression of diseases such as cancer. However, whether tensional homeostasis operates at the single cell level is unclear. Here, we directly test the ability of single fibroblast cells to regulate tension when subjected to mechanical displacements in the absence of changes to spread area or substrate elasticity. We use a feedback-controlled atomic force microscope to measure and modulate forces and displacements of individual contracting cells as they spread on a fibronectin-patterned atomic-force microscope cantilever and coverslip. We find that the cells reach a steady-state contraction force and height that is insensitive to stiffness changes as they fill the micropatterned areas. Rather than maintaining a constant tension, the fibroblasts altered their contraction force in response to mechanical displacement in a strain-rate-dependent manner, leading to a new and stable steady-state force and height. This response is influenced by overexpression of the actin crosslinker α-actinin, and rheology measurements reveal that changes in cell elasticity are also strain- rate-dependent. Our finding of tensional buffering, rather than homeostasis, allows cells to transition between different tensional states depending on how they are displaced, permitting distinct responses to slow deformations during tissue growth and rapid deformations associated with injury.  相似文献   

13.
Adherent cells generate forces through acto-myosin contraction to move, change shape, and sense the mechanical properties of their environment. They are thought to maintain defined levels of tension with their surroundings despite mechanical perturbations that could change tension, a concept known as tensional homeostasis. Misregulation of tensional homeostasis has been proposed to drive disorganization of tissues and promote progression of diseases such as cancer. However, whether tensional homeostasis operates at the single cell level is unclear. Here, we directly test the ability of single fibroblast cells to regulate tension when subjected to mechanical displacements in the absence of changes to spread area or substrate elasticity. We use a feedback-controlled atomic force microscope to measure and modulate forces and displacements of individual contracting cells as they spread on a fibronectin-patterned atomic-force microscope cantilever and coverslip. We find that the cells reach a steady-state contraction force and height that is insensitive to stiffness changes as they fill the micropatterned areas. Rather than maintaining a constant tension, the fibroblasts altered their contraction force in response to mechanical displacement in a strain-rate-dependent manner, leading to a new and stable steady-state force and height. This response is influenced by overexpression of the actin crosslinker α-actinin, and rheology measurements reveal that changes in cell elasticity are also strain- rate-dependent. Our finding of tensional buffering, rather than homeostasis, allows cells to transition between different tensional states depending on how they are displaced, permitting distinct responses to slow deformations during tissue growth and rapid deformations associated with injury.  相似文献   

14.
Collective cell migrations are essential in several physiological processes and are driven by both chemical and mechanical cues. The roles of substrate stiffness and confinement on collective migrations have been investigated in recent years, however few studies have addressed how geometric shapes influence collective cell migrations. Here, we address the hypothesis that the relative position of a cell within the confinement influences its motility. Monolayers of two types of epithelial cells—MCF7, a breast epithelial cancer cell line, and MDCK, a control epithelial cell line—were confined within circular, square, and cross-shaped stencils and their migration velocities were quantified upon release of the constraint using particle image velocimetry. The choice of stencil geometry allowed us to investigate individual cell motility within convex, straight and concave boundaries. Cells located in sharp, convex boundaries migrated at slower rates than those in concave or straight edges in both cell types. The overall cluster migration occurred in three phases: an initial linear increase with time, followed by a plateau region and a subsequent decrease in cluster speeds. An acto-myosin contractile ring, present in the MDCK but absent in MCF7 monolayer, was a prominent feature in the emergence of leader cells from the MDCK clusters which occurred every ~125 μm from the vertex of the cross. Further, coordinated cell movements displayed vorticity patterns in MDCK which were absent in MCF7 clusters. We also used cytoskeletal inhibitors to show the importance of acto-myosin bounding cables in collective migrations through translation of local movements to create long range coordinated movements and the creation of leader cells within ensembles. To our knowledge, this is the first demonstration of how bounding shapes influence long-term migratory behaviours of epithelial cell monolayers. These results are important for tissue engineering and may also enhance our understanding of cell movements during developmental patterning and cancer metastasis.  相似文献   

15.
The ability to control the differentiation of stem cells into specific neuronal types has a tremendous potential for the treatment of neurodegenerative diseases. In vitro neuronal differentiation can be guided by the interplay of biochemical and biophysical cues. Different strategies to increase the differentiation yield have been proposed, focusing everything on substrate topography, or, alternatively on substrate stiffness. Both strategies demonstrated an improvement of the cellular response. However it was often impossible to separate the topographical and the mechanical contributions. Here we investigate the role of the mechanical properties of nanostructured substrates, aiming at understanding the ultimate parameters which govern the stem cell differentiation. To this purpose a set of different substrates with controlled stiffness and with or without nanopatterning are used for stem cell differentiation. Our results show that the neuronal differentiation yield depends mainly on the substrate mechanical properties while the geometry plays a minor role. In particular nanostructured and flat polydimethylsiloxane (PDMS) substrates with comparable stiffness show the same neuronal yield. The improvement in the differentiation yield obtained through surface nanopatterning in the submicrometer scale could be explained as a consequence of a substrate softening effect. Finally we investigate by single cell force spectroscopy the neuronal precursor adhesion on the substrate immediately after seeding, as a possible critical step governing the neuronal differentiation efficiency. We observed that neuronal precursor adhesion depends on substrate stiffness but not on surface structure, and in particular it is higher on softer substrates. Our results suggest that cell–substrate adhesion forces and mechanical response are the key parameters to be considered for substrate design in neuronal regenerative medicine. Biotechnol. Bioeng. 2013; 110: 2301–2310. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Matrix stiffness strongly influences growth, differentiation and function of adherent cells1-3. On the macro scale the stiffness of tissues and organs within the human body span several orders of magnitude4. Much less is known about how stiffness varies spatially within tissues, and what the scope and spatial scale of stiffness changes are in disease processes that result in tissue remodeling. To better understand how changes in matrix stiffness contribute to cellular physiology in health and disease, measurements of tissue stiffness obtained at a spatial scale relevant to resident cells are needed. This is particularly true for the lung, a highly compliant and elastic tissue in which matrix remodeling is a prominent feature in diseases such as asthma, emphysema, hypertension and fibrosis. To characterize the local mechanical environment of lung parenchyma at a spatial scale relevant to resident cells, we have developed methods to directly measure the local elastic properties of fresh murine lung tissue using atomic force microscopy (AFM) microindentation. With appropriate choice of AFM indentor, cantilever, and indentation depth, these methods allow measurements of local tissue shear modulus in parallel with phase contrast and fluorescence imaging of the region of interest. Systematic sampling of tissue strips provides maps of tissue mechanical properties that reveal local spatial variations in shear modulus. Correlations between mechanical properties and underlying anatomical and pathological features illustrate how stiffness varies with matrix deposition in fibrosis. These methods can be extended to other soft tissues and disease processes to reveal how local tissue mechanical properties vary across space and disease progression.  相似文献   

17.
ABSTRACT

Migration of a fibroblast along a collagen fiber can be regarded as cell locomotion in one-dimension (1D). In this process, a cell protrudes forward, forms a new adhesion, produces traction forces, and releases its rear adhesion in order to advance itself along a path. However, how a cell coordinates its adhesion formation, traction forces, and rear release in 1D migration is unclear. Here, we studied fibroblasts migrating along a line of microposts. We found that when the front of a cell protruded onto a new micropost, the traction force produced at its front increased steadily, but did so without a temporal correlation in the force at its rear. Instead, the force at the front coordinated with a decrease in force at the micropost behind the front. A similar correlation in traction forces also occurred at the rear of a cell, where a decrease in force due to adhesion detachment corresponded to an increase in force at the micropost ahead of the rear. Analysis with a bio-chemo-mechanical model for traction forces and adhesion dynamics indicated that the observed relationship between traction forces at the front and back of a cell is possible only when cellular elasticity is lower than the elasticity of the cellular environment.  相似文献   

18.
Cell-to-cell adhesions are crucial in maintaining the structural and functional integrity of cardiac cells. Little is known about the mechanosensitivity and mechanotransduction of cell-to-cell interactions. Most studies of cardiac mechanotransduction and myofibrillogenesis have focused on cell-extracellular matrix (ECM)-specific interactions. This study assesses the direct role of intercellular adhesion, specifically that of N-cadherin-mediated mechanotransduction, on the morphology and internal organization of neonatal ventricular cardiac myocytes. The results show that cadherin-mediated cell attachments are capable of eliciting a cytoskeletal network response similar to that of integrin-mediated force response and transmission, affecting myofibrillar organization, myocyte shape, and cortical stiffness. Traction forces mediated by N-cadherin were shown to be comparable to those sustained by ECM. The directional changes in predicted traction forces as a function of imposed loads (gel stiffness) provide the added evidence that N-cadherin is a mechanoresponsive adhesion receptor. Strikingly, the mechanical sensitivity response (gain) in terms of the measured cell-spread area as a function of imposed load (adhesive substrate rigidity) was consistently higher for N-cadherin-coated surfaces compared with ECM protein-coated surfaces. In addition, the cytoskeletal architecture of myocytes on an N-cadherin adhesive microenvironment was characteristically different from that on an ECM environment, suggesting that the two mechanotransductive cell adhesion systems may play both independent and complementary roles in myocyte cytoskeletal spatial organization. These results indicate that cell-to-cell-mediated force perception and transmission are involved in the organization and development of cardiac structure and function.  相似文献   

19.
Understanding mechanosensitivity (i.e., how cells sense the stiffness of their environment) is very important, yet there is a fundamental difficulty in understanding its mechanism: to measure an elastic modulus one requires two points of application of force—a measuring and a reference point. The cell in contact with substrate has only one (adhesion) point to work with, and thus a new method of measurement needs to be invented. The aim of this theoretical work is to develop a self-consistent physical model for mechanosensitivity, a process by which a cell detects the mechanical stiffness of its environment (e.g., a substrate it is attached to via adhesion points) and generates an appropriate chemical signaling to remodel itself in response to this environment. The model uses the molecular mechanosensing complex of latent TGF-β attached to the adhesion point as the biomarker. We show that the underlying Brownian motion in the substrate is the reference element in the measuring process. The model produces a closed expression for the rate of release of active TGF-β, which depends on the substrate stiffness and the pulling force coming from the cell in a subtle and nontrivial way. It is consistent with basic experimental data showing an increase in signal for stiffer substrates and higher pulling forces. In addition, we find that for each cell there is a range of stiffness where a homeostatic configuration of the cell can be achieved, outside of which the cell either relaxes its cytoskeletal forces and detaches from the very weak substrate, or generates an increasingly strong pulling force through stress fibers with a positive feedback loop on very stiff substrates. In this way, the theory offers the underlying mechanism for the myofibroblast conversion in wound healing and smooth muscle cell dysfunction in cardiac disease.  相似文献   

20.
Understanding mechanosensitivity (i.e., how cells sense the stiffness of their environment) is very important, yet there is a fundamental difficulty in understanding its mechanism: to measure an elastic modulus one requires two points of application of force—a measuring and a reference point. The cell in contact with substrate has only one (adhesion) point to work with, and thus a new method of measurement needs to be invented. The aim of this theoretical work is to develop a self-consistent physical model for mechanosensitivity, a process by which a cell detects the mechanical stiffness of its environment (e.g., a substrate it is attached to via adhesion points) and generates an appropriate chemical signaling to remodel itself in response to this environment. The model uses the molecular mechanosensing complex of latent TGF-β attached to the adhesion point as the biomarker. We show that the underlying Brownian motion in the substrate is the reference element in the measuring process. The model produces a closed expression for the rate of release of active TGF-β, which depends on the substrate stiffness and the pulling force coming from the cell in a subtle and nontrivial way. It is consistent with basic experimental data showing an increase in signal for stiffer substrates and higher pulling forces. In addition, we find that for each cell there is a range of stiffness where a homeostatic configuration of the cell can be achieved, outside of which the cell either relaxes its cytoskeletal forces and detaches from the very weak substrate, or generates an increasingly strong pulling force through stress fibers with a positive feedback loop on very stiff substrates. In this way, the theory offers the underlying mechanism for the myofibroblast conversion in wound healing and smooth muscle cell dysfunction in cardiac disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号