首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Bile acids play essential roles in the absorption of dietary lipids and in the regulation of bile acid biosynthesis. Recently, a G protein-coupled receptor, TGR5, was identified as a cell-surface bile acid receptor. In this study, we show that bile acids promote glucagon-like peptide-1 (GLP-1) secretion through TGR5 in a murine enteroendocrine cell line STC-1. In STC-1 cells, bile acids promoted GLP-1 secretion in a dose-dependent manner. As STC-1 cells express TGR5 mRNA, we examined whether bile acids induce GLP-1 secretion through TGR5. RNA interference experiments showed that reduced expression of TGR5 resulted in reduced secretion of GLP-1. Furthermore, transient transfection of STC-1 cells with an expression plasmid containing TGR5 significantly enhanced GLP-1 secretion, indicating that bile acids promote GLP-1 secretion through TGR5 in STC-1 cells. Bile acids induced rapid and dose-dependent elevation of intracellular cAMP levels in STC-1 cells. An adenylate cyclase inhibitor, MDL12330A, significantly suppressed bile acid-promoted GLP-1 secretion, suggesting that bile acids induce GLP-1 secretion via intracellular cAMP production in STC-1 cells.  相似文献   

4.
The retinal pigment epithelium (RPE) plays an essential role in the survival and function of the neural retina. RPE uncontrolled proliferation leads to the development of proliferative ocular pathologies, among which proliferative vitreoretinopathy (PVR) is the main cause of retinal surgery failure. Upon the breakdown of the BRB due to trauma or metabolic imbalance the contact of RPE with serum-contained thrombin has been shown to stimulate the proliferation of otherwise quiescent RPE cells. Although the molecular mechanisms involved in this effect are still undetermined, thrombin proteolytic activation of protease-activated G protein coupled receptor-1 (PAR-1) activates PI3K and Akt, known to play an essential role in proliferation. The present study demonstrates that: 1) thrombin stimulates Ser 473 Akt phosphorylation without affecting Thr 308 basal phosphorylation in RPE cells; 2) thrombin-induced Akt stimulation promotes cyclin D1 accumulation through the phosphorylation/ inhibition of GSK-3β, thus preventing Thr 286 cyclin D1 phosphorylation, nuclear export and degradation; 3) Akt signaling requires the upstream activation of PI3K and PLC. Since the pharmacological inhibition of these pathways or the silencing of cyclin expression prevent thrombin-induced RPE cell proliferation, these results contribute relevant evidence for establishing the mechanism involved in the development of proliferative eye diseases.  相似文献   

5.
Dendritic cells (DCs) are the major antigen-presenting cells and play an important role in autoimmune uveitis. Emerging evidence suggests that bile acids (BAs) regulate DCs maturation. However, the underlying mechanisms by which BAs regulate the function of DCs still need to be clarified. Here, we demonstrate that lithocholic acid (LCA) inhibits the production of pro-inflammatory cytokines and the expression of surface molecules in bone marrow-derived dendritic cells (BMDCs). LCA attenuates the severity of EAU by modulating the maturation of splenic CD11C+MHCIIhigh DCs. Notably, Takeda G-protein coupled receptor 5 (TGR5) deficiency partially reverses the inhibitory effect of LCA on DCs in vitro and in vivo. TGR5 activation also downregulates the NF-κB and MAPK pathways by inhibiting glutathione production and inducing oxidative stress in DCs, which leads to apoptosis and autophagy in DCs. In addition, LCA or INT-777 treatment increases the TGR5 expression in monocyte-derived dendritic cells (MD-DCs) of patients with active BD, whereas both LCA and TGR5 agonists inhibit the activation of MD-DCs. These results suggest that LCA and TGR5 agonists might be potential therapeutic drugs for the treatment of autoimmune uveitis.  相似文献   

6.
Endometrial cancer (EC) is deemed to be the most typical gynecologic malignant tumor. Despite the incidence of EC being lower in Asia than that in western countries, substantial increased incidence has been observed in the past few decades in Asia. Although various molecular testing methods and genomic science have developed, the overall prognosis is still disappointing. LncRNAs have been found to influence the progression of various cancers. CHL1-AS1 has been found to be upregulated in ovarian endometriosis, nevertheless, the molecular mechanism and biological function of CHL1-AS1 in EC have not been explored. In our exploration, both CHL1-AS1 and CHL1 were upregulated in EC cells. Knockdown of CHL1-AS1 or CHL1 inhibited cell proliferation and migration in EC. Furthermore, microRNA-6076 (miR-6076) could bind with CHL1-AS1 or CHL1, and regulate the expression of CHL1. Finally, absence of miR-6076 or overexpression of CHL1 can partially rescue the effect of CHL1-AS1 knockdown or miR-6076 upregulation on cell proliferation and migration, respectively. All in all, our research was the first endeavor to study the underlying mechanism of CHL1-AS1 in EC and confirmed that CHL1-AS1 regulated EC progression via targeting the miR-6076/CHL1 axis, offering new insight into treating EC.  相似文献   

7.
8.
N6-methyladenosine (m6A) is a well-known modification of RNA. However, as a key m6A methyltransferase, METTL16 has not been thoroughly studied in gastric cancer (GC). Here, the biological role of METTL16 in GC and its underlying mechanism was studied. Immunohistochemistry was used to detect the expression of METTL16 and relationship between METTL16 level and prognosis of GC was analysed. CCK8, colony formation assay, EdU assay and xenograft mouse model were used to study the effect of METTL16. Regulatory mechanism of METTL16 in the progression of GC was studied through flow cytometry analysis, RNA degradation assay, methyltransferase inhibition assay, RT-qPCR and Western blotting. METTL16 was highly expressed in GC cells and tissues and was associated with prognosis. In vitro and in vivo experiments confirmed that METTL16 promoted proliferation of GC cells and tumour growth. Furthermore, down-regulation of METTL16 inhibited proliferation by G1/S blocking. Significantly, we identified cyclin D1 as a downstream effector of METTL16. Knock-down METTL16 decreased the overall level of m6A and the stability of cyclin D1 mRNA in GC cells. Meanwhile, inhibition of methyltransferase activity reduced the level of cyclin D1. METTL16-mediated m6A methylation promotes proliferation of GC cells through enhancing cyclin D1 expression.  相似文献   

9.
Our study aimed at finding a mechanistic relationship between the gut microbiome and breast cancer. Breast cancer cells are not in direct contact with these microbes, but disease could be influenced by bacterial metabolites including secondary bile acids that are exclusively synthesized by the microbiome and known to enter the human circulation. In murine and bench experiments, a secondary bile acid, lithocholic acid (LCA) in concentrations corresponding to its tissue reference concentrations (< 1 μM), reduced cancer cell proliferation (by 10–20%) and VEGF production (by 37%), aggressiveness and metastatic potential of primary tumors through inducing mesenchymal-to-epithelial transition, increased antitumor immune response, OXPHOS and the TCA cycle. Part of these effects was due to activation of TGR5 by LCA. Early stage breast cancer patients, versus control women, had reduced serum LCA levels, reduced chenodeoxycholic acid to LCA ratio, and reduced abundance of the baiH (7α/β-hydroxysteroid dehydroxylase, the key enzyme in LCA generation) gene in fecal DNA, all suggesting reduced microbial generation of LCA in early breast cancer.  相似文献   

10.
Regenerating gene product (Reg) is induced in pancreatic beta-cells and acts as an autocrine/paracrine growth factor for regeneration via a cell surface Reg receptor. However, the manner by which Reg induces beta-cell regeneration was unknown. In the present study, we found that Reg increased phospho-ATF-2, which binds to -57 to -52 of the cyclin D1 gene to activate the promoter. The Reg/ATF-2-induced cyclin D1 promoter activation was attenuated by PI(3)K inhibitors such as LY294002 and wortmannin. In Reg knockout mouse islets, the levels of phospho-ATF-2, cyclin D1, and phospho-Rb were greatly decreased. These results indicate that the Reg-Reg receptor system stimulates the PI(3)K/ATF-2/cyclin D1 signaling pathway to induce beta-cell regeneration.  相似文献   

11.
Cigarette smoke has been demonstrated to induce pulmonary vascular remodeling, which is characterized by medial thickening of the pulmonary arteries mainly resulting from the abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs). However, the molecular mechanism underlying this process is still unclear. In the present study, we investigated whether CCN2 regulated rat PASMCs (rPASMCs) proliferation induced by cigarette smoke extract (CSE) and nicotine by upregulating cyclin D1 in vitro. CCN2 siRNA or cyclin D1 siRNA were transfected to rPASMCs which were then exposed to CSE and nicotine. Both mRNA and protein expressions of CCN2 were significantly increased in rPASMCs treated with 2% CSE or 1 µM nicotine, which markedly promoted the proliferation of rPASMCs. CCN2 siRNA inhibited the proliferation of rPASMCs induced by CSE or nicotine. Furthermore, CCN2 siRNA markedly suppressed the mRNA and protein expressions of cyclin D1 in rPASMCs and led to cell cycle arrest in G0/G1 phase resulting in reduced rPASMCs proliferation. These findings suggest that CCN2 contributes to the CSE and nicotine‐induced proliferation of rPASMCs at least in part by upregulating cyclin D1 expression. J. Cell. Biochem. 113: 349–359, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
13.
张辉  ;方肇勤 《生物磁学》2007,(1):131-134
细胞周期调控异常会导致肿瘤的发生和发展,CyclinD1是细胞周期的重要调控元件之一,与肝癌发生、进展及预后关系密切。本文就CyclinD1的结构、功能、作用机制、肝癌组织中CyclinD1及其相关基因研究的进展情况予以综述。  相似文献   

14.
15.
16.
We have evaluated cell survival, apoptosis, and cell cycle responses in a panel of DNA mismatch repair (MMR)-deficient colon and prostate cancer cell lines after alkylation and UV-C damage. We show that although these MMR-deficient cells tolerate alkylation damage, they are as sensitive to UV-C-induced damage as are the MMR-proficient cells. MMR-proficient cells arrest in the S-G2 phase of the cell cycle and initiate apoptosis following alkylation damage, whereas MMR-deficient cells continue proliferation. However, two prostate cancer cell lines that are MMR-deficient surprisingly arrest transiently in S-G2 after alkylation damage. Progression through G1 phase initially depends on the expression of one or more of the D-type cyclins (D1, D2, and/or D3). Analysis of cyclin D1 expression shows an initial MMR-independent decrease in the protein level after alkylation as well as UV-C damage. At later time points, however, only DNA damage-arrested cells showed decreased cyclin D1 levels irrespective of MMR status, indicating that reduced cyclin D1 could be a result of a smaller fraction of cells being in G1 phase rather than a result of an intact MMR system. Finally, we show that cyclin D1 is degraded by the proteasome in response to alkylation damage.  相似文献   

17.
Endometrial cancer (EC) constitutes a common female genital tract tumor with a rising incidence rate. Sirtuin 1 (SIRT1) is a member of histone deacetylase, which extensively participates in the progression of aging, cell death, and tumorigenesis. This study explored the effect of SIRT1-mediated LC3 acetylation on autophagy and proliferation of EC cells. SIRT1 expression in EC tissues and adjacent tissues, EC cell lines and normal human epithelial cells was detected. SIRT1 expression was elevated in EC cell lines and tissues. Knockdown of SIRT1 inhibited proliferation, migration, and invasion of EC cells. Then, EC cells were starved in serum-free medium, and levels of autophagy-related proteins were detected. Starvation induced autophagy of EC cells. The starvation-treated EC cells showed an increased SIRT1 expression, a decreased LC3 acetylation level and an increased autophagy level. The proliferation and autophagy of EC cells under different treatments were evaluated. In EC cells transfected with overexpressing SIRT1, LC3 acetylation was inhibited and cell proliferation was promoted. Moreover, overexpressing SIRT1 facilitated growth and autophagy of transplanted tumors in nude mice. In conclusion, SIRT1 promoted autophagy and proliferation of EC cells by reducing acetylation level of LC3.  相似文献   

18.
We have previously shown that the mitogenic effect of endothelin-1 (ET-1) in primary astrocytes is dependent on activation of both extracellular signal-regulated kinase (ERK)- and cytoskeleton (CSK)-dependent pathways. In this study, we evaluated the contribution of each of these pathways to the expression and activation of proteins mediating cell cycle progression. Our results suggest that ET-1-induced expression of cyclins D1 and D3 is dependent on the ERK- and CSK-dependent pathways, respectively; moreover, a decrease in the levels of the cyclin-dependent kinase inhibitor (CKI) p27 was observed as a consequence of ERK activation. Expression of both cyclins D1 and D3 together with a decrease in the p27 levels are essential for retinoblastoma protein (pRB) phosphorylation and cyclin A expression. Furthermore, the molecular events responsible for cell-cell contact inhibition of astrocyte proliferation were found to be independent of the mitogenic pathways leading to D-type cyclin expression. Cell growth arrest in confluent astrocytes was found to be correlated with increased expression of CKI p21, resulting in inhibition of D-type cyclin-associated pRB phosphorylation and cyclin A expression. Taken together, these results indicate that cyclins D1 and D3, which constitute the key mediators of the proliferative response of primary astrocytes to ET-1, are regulated by distinct signaling pathways.  相似文献   

19.
Prostate cancer is the most common malignancy in men in developed countries. In previous study, we identified HNF1B (Hepatocyte Nuclear Factor 1β) as a downstream effector of Enhancer of zeste homolog 2 (EZH2). HNF1B suppresses EZH2‐mediated migration of two prostate cancer cell lines via represses the EMT process by inhibiting SLUG expression. Besides, HNF1B expression inhibits cell proliferation through unknown mechanisms. Here, we demonstrated that HNF1B inhibited the proliferation rate of prostate cancer cells. Overexpression of HNF1B in prostate cancer cells led to the arrest of G1 cell cycle and decreased Cyclin D1 expression. In addition, we re‐explored data from ChIP‐sequencing (ChIP‐seq) and RNA‐sequencing (RNA‐seq), and demonstrated that HNF1B repressed Cyclin D1 via direct suppression of SMAD6 expression. We also identified CDKN2A as a HNF1B‐interacting protein that would contribute to HNF1B‐mediated repression of SMAD6 expression. In summary, we provide the novel mechanisms and evidence in support HNF1B as a tumour suppressor gene for prostate cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号