共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cell cycle (Georgetown, Tex.)》2013,12(6):1043-1050
Breast cancer is a complex disease that comprises cancers of distinct biologies and responses to treatment. Clinical management relies on traditional clinicopathological parameters, involving lymph node status, histological grade, as well as expression of the estrogen receptor or human epidermal growth factor receptor 2. Molecular pathology as well as protein and gene expression profiling have divided breast tumors into molecular subtypes associated with different clinical outcomes. One of these, defined as basal breast cancer, is associated with poor prognosis. Molecular mechanisms involved in the induction of basal breast cancer are poorly understood and targeted therapies for this subtype are lacking. Recent evidence using murine models identified a role for the Met receptor tyrosine kinase in the induction of murine mammary tumors with characteristics of human basal breast cancers. Moreover, elevated Met protein and RNA is associated with human basal tumors and poor outcome. These studies identify a link between the Met receptor tyrosine kinase, epithelial mesenchymal transition, and basal breast cancer. In this review, we provide an overview of murine Met models in relation to the spectrum of mouse models of breast cancer and a role for the Met receptor in basal breast cancer tumorigenesis. 相似文献
2.
Electrochemical detection of gene expression in tumor samples: overexpression of Rak nuclear tyrosine kinase 总被引:1,自引:0,他引:1
Absolute quantification of Rak nuclear tyrosine kinase mRNA in breast tissue samples was determined by competitive RT-PCR. The total RNA from the same samples was also chemically amplified through conventional RT-PCR, and the relative amounts of these amplified RT-PCR products were determined by adsorption onto an indium tin oxide (ITO) electrode followed by electrochemical detection. The electrochemical detection was performed using the inorganic metal complex Ru(bpy)(3)(2+) (bpy = 2,2' bipyridine) to catalyze the oxidation of the guanine residues of the immobilized RT-PCR products. Using the competitive RT-PCR values as standards, it was found that an optimized conventional RT-PCR coupled with electrochemical detection provides a simple method for measuring relative gene expression among a series of mRNA samples from breast tumors. The use of electrochemical detection potentially eliminates the need for gel electrophoresis and fluorescent or radioactive labels in detecting the target genes. 相似文献
3.
Background
The response rate to EGFR tyrosine kinase inhibitors (TKIs) may be poor and unpredictable in cancer patients with EGFR expression itself being an inadequate response indicator. There is limited understanding of the mechanisms underlying this resistance. Furthermore, although TKIs suppress the growth of HER2-overexpressing breast tumor cells, they do not fully inhibit HER2 oncogenic function at physiological doses.Methodology and Principal Findings
Here we have provided a molecular mechanism of how HER2 oncogenic function escapes TKIs'' inhibition via alternative HER receptor activation as a result of autocrine ligand release. Using both Förster Resonance Energy Transfer (FRET) which monitors in situ HER receptor phosphorylation as well as classical biochemical analysis, we have shown that the specific tyrosine kinase inhibitors (TKIs) of EGFR, AG1478 and Iressa (Gefitinib) decreased EGFR and HER3 phosphorylation through the inhibition of EGFR/HER3 dimerization. Consequent to this, we demonstrate that cleavage of HER4 and dimerization of HER4/HER2 occur together with reactivation of HER3 via HER2/HER3, leading to persistent HER2 phosphorylation in the now resistant, surviving cells. These drug treatment–induced processes were found to be mediated by the release of ligands including heregulin and betacellulin that activate HER3 and HER4 via HER2. Whereas an anti-betacellulin antibody in combination with Iressa increased the anti-proliferative effect in resistant cells, ligands such as heregulin and betacellulin rendered sensitive SKBR3 cells resistant to Iressa.Conclusions and Significance
These results demonstrate the role of drug-induced autocrine events leading to the activation of alternative HER receptors in maintaining HER2 phosphorylation and in mediating resistance to EGFR tyrosine kinase inhibitors (TKIs) in breast cancer cells, and hence specify treatment opportunities to overcome resistance in patients. 相似文献4.
《Cell cycle (Georgetown, Tex.)》2013,12(18):2936-2941
Recent studies have identified development of resistance to tyrosine kinase inhibition (TKI) as a significant roadblock to effective treatment. One mechanism of resistance recently appreciated involves 'oncogene switching', or the re-activation of signaling pathways by one or more redundant upstream activators. In breast cancer models, ErbB TKIs such as gefitinib have been shown to lose the ability to modulate ErbB-driven signaling pathways over time, even though ErbB inhibition is maintained. Although incomplete ErB inhibition has been proposed to underlie this phenomenon, our findings suggest that oncogene switching can also re-activate downstream signaling pathways in breast cancer cells, even when ErbB inhibition is complete. We find that ErbB TKI-induced Src activation mediates downstream signaling rebound in SKBR3 cells, and we show that combination of Src and ErbB inhibitors is more effective and longlasting than is either TKI alone. Finally, the Hsp90 inhibitor 17-AAG, by simultaneously and durably inhibiting multiple signaling activators including ErbB and Src kinases, does not permit oncogene switching and results in a more prolonged and robust inhibition of downstream signaling pathways in breast cancer cells than do individual TKIs. These data support the continued clinical evaluation of Hsp90 inhibitors in breast cancer. 相似文献
5.
Giordano CR Mueller KL Terlecky LJ Krentz KA Bollig-Fischer A Terlecky SR Boerner JL 《Experimental cell research》2012,318(16):2014-2021
Gefitinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) of potential use in patients with breast cancer. Unfortunately, in clinical studies, gefitinib is often ineffective indicating that resistance to EGFR inhibitors may be a common occurrence in cancer of the breast. EGFR has been shown to be overexpressed in breast cancer, and in particular remains hyperphosphorylated in cell lines such as MDA-MB-468 that are resistant to EGFR inhibitors. Here, we investigate the cause of this sustained phosphorylation and the molecular basis for the ineffectiveness of gefitinib. We show that reactive oxygen species (ROS), known to damage cellular macromolecules and to modulate signaling cascades in a variety of human diseases including cancers, appear to play a critical role in mediating EGFR TKI-resistance. Furthermore, elimination of these ROS through use of a cell-penetrating catalase derivative sensitizes the cells to gefitinib. These results suggest a new approach for the treatment of TKI-resistant breast cancer patients specifically, the targeting of ROS and attendant downstream oxidative stress and their effects on signaling cascades. 相似文献
6.
《Cell cycle (Georgetown, Tex.)》2013,12(4):648-655
Approximately 25% of breast cancers overexpress and depend on the receptor tyrosine kinase ERBB2, one of 4 ERBB family members. Targeted therapies directed against ERBB2 have been developed and used clinically, but many patients continue to develop resistance to such therapies. Although much effort has been focused on elucidating the mechanisms of acquired resistance to ERBB2-targeted therapies, the involvement of ERBB4 remains elusive and controversial. We demonstrate that genetic ablation of ERBB4, but not ERBB1-3, led to apoptosis in lapatinib-resistant cells, suggesting that the efficacy of pan-ERBB inhibitors was, at least in part, mediated by the inhibition of ERBB4. Moreover, ERBB4 was upregulated at the protein level in ERBB2+ breast cancer cell lines selected for acquired lapatinib resistance in vitro and in MMTV-Neu mice following prolonged lapatinib treatment. Knockdown of ERBB4 caused a decrease in AKT phosphorylation in resistant cells but not in sensitive cells, suggesting that ERBB4 activated the PI3K/AKT pathway in lapatinib-resistant cells. Importantly, ERBB4 knockdown triggered apoptosis not only in lapatinib-resistant cells but also in trastuzumab-resistant cells. Our results suggest that although ERBB4 is dispensable for naïve ERBB2+ breast cancer cells, it may play a key role in the survival of ERBB2+ cancer cells after they develop resistance to ERBB2 inhibitors, lapatinib and trastuzumab. 相似文献
7.
Kaleigh Canfield Jiaqi Li Owen M. Wilkins Meghan M Morrison Matthew Ung Wendy Wells Charlotte R. Williams Karen T Liby Detlef Vullhorst Andres Buonanno Huizhong Hu Rachel Schiff Rebecca S Cook Manabu Kurokawa 《Cell cycle (Georgetown, Tex.)》2015,14(4):648-655
Approximately 25% of breast cancers overexpress and depend on the receptor tyrosine kinase ERBB2, one of 4 ERBB family members. Targeted therapies directed against ERBB2 have been developed and used clinically, but many patients continue to develop resistance to such therapies. Although much effort has been focused on elucidating the mechanisms of acquired resistance to ERBB2-targeted therapies, the involvement of ERBB4 remains elusive and controversial. We demonstrate that genetic ablation of ERBB4, but not ERBB1-3, led to apoptosis in lapatinib-resistant cells, suggesting that the efficacy of pan-ERBB inhibitors was, at least in part, mediated by the inhibition of ERBB4. Moreover, ERBB4 was upregulated at the protein level in ERBB2+ breast cancer cell lines selected for acquired lapatinib resistance in vitro and in MMTV-Neu mice following prolonged lapatinib treatment. Knockdown of ERBB4 caused a decrease in AKT phosphorylation in resistant cells but not in sensitive cells, suggesting that ERBB4 activated the PI3K/AKT pathway in lapatinib-resistant cells. Importantly, ERBB4 knockdown triggered apoptosis not only in lapatinib-resistant cells but also in trastuzumab-resistant cells. Our results suggest that although ERBB4 is dispensable for naïve ERBB2+ breast cancer cells, it may play a key role in the survival of ERBB2+ cancer cells after they develop resistance to ERBB2 inhibitors, lapatinib and trastuzumab. 相似文献
8.
Abdulhussein R McFadden C Fuentes-Prior P Vogel WF 《The Journal of biological chemistry》2004,279(30):31462-31470
Discoidin domain receptors 1 and 2 (DDR1 and DDR2) are tyrosine kinase receptors activated by triple-helical collagens. Aberrant expression and signaling of these receptors have been implicated in several human diseases linked to accelerated matrix degradation and remodeling including tumor invasion, atherosclerosis and liver fibrosis. The objective of this study is to characterize the collagen-binding sites in the discoidin domains of DDR1 and DDR2 at a molecular level. We expressed glutathione S-transferase fusion proteins containing the discoidin and extracellular domains of DDR1 and DDR2 in insect cells and subjected them to a solid-phase collagen-binding assay. We found high affinity binding of the DDR extracellular domains to immobilized type I collagen and confirmed the discoidin-collagen interaction with an enzyme-linked immunosorbent assay-based read-out. Furthermore, we created a three-dimensional model of the DDR1 discoidin domain based on the related domains of blood coagulation factors V and VIII. This model predicts the presence of four neighboring, surface-exposed loops that are topologically equivalent to a major phospholipid-binding site in factors V and VIII. To test the involvement of these loops in collagen binding, we mutated individual amino acid residues to alanine or deleted short sequence stretches within these loops. We found that several residues within loop 1 (Ser-52-Thr-57) and loop 3 (Arg-105-Lys-112) as well as Ser-175 in loop 4 are critically involved in collagen binding. Our structure-function analysis of the DDR discoidin domains provides new insights into this non-integrin-mediated collagen-signaling mechanism and may ultimately lead to the design of small molecule inhibitors that interfere with aberrant DDR function. 相似文献
9.
Etk/Bmx tyrosine kinase activates Pak1 and regulates tumorigenicity of breast cancer cells 总被引:5,自引:0,他引:5
Bagheri-Yarmand R Mandal M Taludker AH Wang RA Vadlamudi RK Kung HJ Kumar R 《The Journal of biological chemistry》2001,276(31):29403-29409
Etk/Bmx, a member of the Tec family of nonreceptor protein-tyrosine kinases, is characterized by an N-terminal pleckstrin homology domain and has been shown to be a downstream effector of phosphatidylinositol 3-kinase. P21-activated kinase 1 (Pak1), another well characterized effector of phosphatidylinositol 3-kinase, has been implicated in the progression of breast cancer cells. In this study, we characterized the role of Etk in mammary development and tumorigenesis and explored the functional interactions between Etk and Pak1. We report that Etk expression is developmentally regulated in the mammary gland. Using transient transfection, coimmunoprecipitation and glutathione S-transferase-pull down assays, we showed that Etk directly associates with Pak1 via its N-terminal pleckstrin homology domain and also phosphorylates Pak1 on tyrosine residues. The expression of wild-type Etk in a non-invasive human breast cancer MCF-7 cells significantly increased proliferation and anchorage-independent growth of epithelial cancer cells. Conversely, expression of kinase-inactive mutant Etk-KQ suppressed the proliferation, anchorage-independent growth, and tumorigenicity of human breast cancer MDA-MB435 cells. These results indicate that Pak1 is a target of Etk and that Etk controls the proliferation as well as the anchorage-independent and tumorigenic growth of mammary epithelial cancer cells. 相似文献
10.
Six years have now elapsed since efforts to establish heterologous cell expression systems for studies of the human insulin receptor were begun. As is apparent from the results summarized in Figs. 1 and 2, a significant number of studies have been devoted to the analysis of receptor mutations, both experimentally derived (i.e. by mutagenesis) and those identified in human patients, as well as to the generation of soluble derivatives of the major functional domains of the receptor for use in biophysical studies. While it is certainly clear that these methods can be expected to yield an ever-increasing body of data concerning insulin receptor structure/function, it is equally apparent that attention to a number of basic experimental limitations inherent in these approaches will be required to resolve a number of fundamental questions and disagreements concerning particular receptor mutations. Given the level of interest in the insulin receptor that has persisted over the past several decades, one expects that these efforts will be forthcoming, and that our understanding of this complex transmembrane receptor will, with time, improve. 相似文献
11.
Protein tyrosine kinases (PTKs) are critical in regulating cell growth and differentiation and are deeply involved in several cancers. PTK-inhibitors are mainly ATP-site directed and are finding use in the treatment of several cancers, and more than 30 such agents are now in phase I-III clinical trials. The present review focuses mainly on the development of PTK inhibitors in clinical trials, with special emphasis on imatinib mesylate, a rationally designed, potent oral anticancer agent and selective inhibitor for Abl tyrosine kinase, including Bcr-Abl, C-kit and platelet-derived growth factor-receptor tyrosine kinases, which has been implicated in several malignancies, including chronic myeloid leukemia and gastrointestinal stromal tumour. 相似文献
12.
Phosphorylation of DARPP-32 regulates breast cancer cell migration downstream of the receptor tyrosine kinase DDR1 总被引:1,自引:0,他引:1
Hansen C Greengard P Nairn AC Andersson T Vogel WF 《Experimental cell research》2006,312(20):4011-4018
Cell migration plays a central role in processes such as development, wound healing and cancer metastasis. Here we describe a novel interaction between DDR1, a receptor tyrosine kinase activated by collagen, and the phosphoprotein DARPP-32 in mammary epithelial cells. DARPP-32 expression was readily detected in non-transformed mammary cell lines, but was strongly reduced or even absent in breast tumor cell lines, such as MCF7. Transfection of MCF7 cells with DARPP-32 resulted in severely impaired cell migration, while DARPP-32 transfection into the DDR1-deficient breast cancer cell line MDA-MB-231 did not alter migration. Co-expression of both DDR1 and DARPP-32 in MDA-MB-231 cells inhibited migration, thereby supporting a critical role of the DDR1/DARPP-32 complex in motility. Mutational substitution of the phosphorylation sites Thr-34 or Thr-75 on DARPP-32 revealed that phosphorylation of Thr-34 is necessary for the ability of DARPP-32 to impair breast tumor cell migration. Thus, DARPP-32 signaling downstream of DDR1 is a potential new target for effective anti-metastatic breast cancer therapy. 相似文献
13.
Selective tyrosine kinase inhibitors have emerged as important therapeutic agents in the treatment of a variety of human malignancies. Although several of these inhibitors have marked clinical activity, it is widely recognized that the overall value of these agents is substantially limited by the acquisition of drug resistance, which eventually arises in most, if not all treated patients. Mechanisms of drug resistance are beginning to be elucidated through the molecular analysis of clinical specimens as well as through cell culture modeling. By identifying resistance mechanisms, it should be possible to develop 'second-generation' inhibitors as well as rational drug combinations that can overcome or even prevent acquired resistance to kinase inhibitors, thereby enhancing clinical benefit. 相似文献
14.
Breast cancer is linked to hyperactivation of protein tyrosine kinases (PTKs), and recent studies have unveiled that selective tyrosine dephosphorylation by protein tyrosine phosphatases (PTPs) of specific substrates, including PTKs, may activate or inactivate oncogenic pathways in human breast cancer cell growth-related processes. Here, we review the current knowledge on the involvement of PTPs in breast cancer, as major regulators of breast cancer therapy-targeted PTKs, such as HER1/EGFR, HER2/Neu, and Src. The functional interplay between PTKs and PTK-activating or -inactivating PTPs, and its implications in novel breast cancer therapies based on targeting of specific PTPs, are discussed. 相似文献
15.
Inhibition of the erbB-2 tyrosine kinase receptor in breast cancer cells by phosphoromonothioate and phosphorodithioate antisense oligonucleotides. 总被引:4,自引:0,他引:4
下载免费PDF全文

J P Vaughn J Stekler S Demirdji J K Mills M H Caruthers J D Iglehart J R Marks 《Nucleic acids research》1996,24(22):4558-4564
Antisense activity against erbB-2 of a variety of sulfur-modified oligonucleotides was examined in a breast cancer cell line which overexpresses this oncogene. Using a 15 base anti-erbB-2 sequence previously shown to be effective, various backbone configurations containing phosphoromonothioate or phosphorodithioate linkages were evaluated for antisense activity by a two-color flow cytometric assay. This sequence was effective in inhibiting the production of erbB-2 protein when it was configured as a monothioate at each linkage and as an alternating dithioate/phosphodiester. Both of these compounds were also able to specifically inhibit erbB-2 mRNA expression, indicative of RNase H-mediated activity. The same sequence protected by either three dithioate or three monothioate linkages at each end was ineffective as an antisense reagent, suggesting that endonuclease activity is a significant determinant of the stability of oligonucleotides. Finally, the erbB-2 sequence target was shifted in an effort to improve antisense activity. A new lead sequence was identified that was significantly more effective in inhibiting erbB-2 protein levels and retained activity at lower concentrations. 相似文献
16.
《Cell cycle (Georgetown, Tex.)》2013,12(24):3847-3857
C-Abl (Abl) regulates multiple cellular processes, including proliferation, survival, shape determination and motility, and participates in cellular responses to genotoxic and oxidative stress stimuli. Mice lacking Abl exhibit retarded growth, osteoporosis and defects in the immune system resulting in lymphopoenia and susceptibility to infections, leading to early death. To define the role of Abl in the regulation of adult T cells we ablated Abl exclusively in T cells by generating mice with floxed abl alleles and expressing an Lck-Cre transgene (Abl-T-/-). These mice exhibited thymic atrophy and abnormally reduced T cell numbers in the periphery. The thymic atrophy was caused by increased susceptibility of thymocytes to cell death. Importantly, Abl deficient T cells displayed abnormally reduced response to mitogenic stimulation in vitro. Consequently, Abl-T-/- mice exhibited impaired ability to reject syngeneic tumor, to induce T-mediated tumor cell killing, and to generate anti-tumor antibodies. These results demonstrate a cell-autonomous role for Abl in T cell function and survival. 相似文献
17.
Sally-Anne Stephenson Stefan Slomka Evelyn L Douglas Peter J Hewett Jennifer E Hardingham 《BMC molecular biology》2001,2(1):15-9
Background
We have used commercially available cDNA arrays to identify EphB4 as a gene that is up-regulated in colon cancer tissue when compared with matched normal tissue from the same patient. 相似文献18.
A protein tyrosine kinase involved in regulation of pp60c-src function 总被引:22,自引:0,他引:22
We recently identified a novel protein tyrosine kinase that specifically phosphorylates truncated pp60c-src (Mr = 53,000) at a tyrosine residue(s) distinct from its autophosphorylation site. In this study, we examined whether this enzyme phosphorylates intact pp60c-src (Mr = 60,000) and determined its phosphorylation site. Non-neuronal and neuronal forms of intact pp60c-src were separately purified from the membrane fraction of neonatal rat brain by sequential column chromatographies. The novel kinase phosphorylated tyrosine residues of both forms of intact pp60c-src. The phosphorylation occurred in parallel with autophosphorylation of pp60c-src, and in both forms the final stoichiometry estimated was quite similar to that of autophosphorylation (about 5%). The enzyme also phosphorylated pp60c-src in which the kinase activity had been destroyed by an ATP analogue, p-fluorosulfonylbenzoyl 5'-adenosine. The phosphorylation site of the non-neuronal form was analyzed by sequential peptide mapping with tosylphenylalanyl chloromethyl ketone-treated trypsin and alpha-chymotrypsin. Tryptic digestion of the phosphorylated pp60c-src yielded a unique phosphopeptide that cross-reacted with an antibody specific for the carboxyl-terminal sequence of chicken pp60c-src. Digestion of the phosphopeptide with chymotrypsin yielded a product that comigrated with a synthetic phosphopeptide corresponding to the carboxyl-terminal 15 residues of chicken pp60c-src. These results clearly indicate that the carboxyl-terminal sequence of rat pp60c-src is identical to that of chicken pp60c-src, and a tyrosine residue corresponding to chicken Tyr527 is the phosphorylation site. This phosphorylation resulted in a decrease in the enolase phosphorylating activity of pp60c-src. Kinetic experiments indicated that this decrease in activity was due to a decrease in the Vmax value of pp60c-src. These findings support our previous proposal that the novel tyrosine kinase acts as a specific regulator of pp60c-src in cells. 相似文献
19.
20.
Members of the Eph family of receptor tyrosine kinases control many aspects of cellular interactions during development, including axon guidance. Here, we demonstrate that EphB2 also regulates postnatal synaptic function in the mammalian CNS. Mice lacking the EphB2 intracellular kinase domain showed wild-type levels of LTP, whereas mice lacking the entire EphB2 receptor had reduced LTP at hippocampal CA1 and dentate gyrus synapses. Synaptic NMDA-mediated current was reduced in dentate granule neurons in EphB2 null mice, as was synaptically localized NR1 as revealed by immunogold localization. Finally, we show that EphB2 is upregulated in hippocampal pyramidal neurons in vitro and in vivo by stimuli known to induce changes in synaptic structure. Together, these data demonstrate that EphB2 plays an important role in regulating synaptic function. 相似文献