首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 791 毫秒
1.
AMPA receptors mediate fast excitatory synaptic transmission in the brain, and are dynamically regulated by phosphorylation of multiple residues within the C-terminal domain. CaMKII phosphorylates Ser831 within the AMPA receptor GluA1 subunit to increase single channel conductance, and biochemical studies show that PKC can also phosphorylate this residue. In light of the discovery of additional PKC phosphorylation sites within the GluA1 C-terminus, it remains unclear whether PKC phosphorylation of Ser831 increases GluA1 conductance in intact receptors. Here, we report that the purified, catalytic subunit of PKC significantly increases the conductance of wild-type GluA1 AMPA receptors expressed in the presence of stargazin in HEK293T cells. Furthermore, the mutation GluA1-S831A blocks the functional effect of PKC. These findings suggest that GluA1 AMPA receptor conductance can be increased by activated CaMKII or PKC, and that phosphorylation at this site provides a mechanism for channel modulation via a variety of protein signaling cascades.  相似文献   

2.
The enhanced AMPA receptor phosphorylation at GluA1 serine 831 sites in the central pain-modulating system plays a pivotal role in descending pain facilitation after inflammation, but the underlying mechanisms remain unclear. We show here that, in the rat brain stem, in the nucleus raphe magnus, which is a critical relay in the descending pain-modulating system of the brain, persistent inflammatory pain induced by complete Freund adjuvant (CFA) can enhance AMPA receptor-mediated excitatory postsynaptic currents and the GluA2-lacking AMPA receptor-mediated rectification index. Western blot analysis showed an increase in GluA1 phosphorylation at Ser-831 but not at Ser-845. This was accompanied by an increase in distribution of the synaptic GluA1 subunit. In parallel, the level of histone H3 acetylation at bdnf gene promoter regions was reduced significantly 3 days after CFA injection, as indicated by ChIP assays. This was correlated with an increase in BDNF mRNA levels and BDNF protein levels. Sequestering endogenous extracellular BDNF with TrkB-IgG in the nucleus raphe magnus decreased AMPA receptor-mediated synaptic transmission and GluA1 phosphorylation at Ser-831 3 days after CFA injection. Under the same conditions, blockade of TrkB receptor functions, phospholipase C, or PKC impaired GluA1 phosphorylation at Ser-831 and decreased excitatory postsynaptic currents mediated by GluA2-lacking AMPA receptors. Taken together, these results suggest that epigenetic up-regulation of BDNF by peripheral inflammation induces GluR1 phosphorylation at Ser-831 sites through activation of the phospholipase C-PKC signaling cascade, leading to the trafficking of GluA1 to pain-modulating neuronal synapses.  相似文献   

3.
GluA1 (formerly GluR1) AMPA receptor subunit phosphorylation at Ser-831 is an early biochemical marker for long-term potentiation and learning. This site is a substrate for Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) and protein kinase C (PKC). By directing PKC to GluA1, A-kinase anchoring protein 79 (AKAP79) facilitates Ser-831 phosphorylation and makes PKC a more potent regulator of GluA1 than CaMKII. PKC and CaM bind to residues 31-52 of AKAP79 in a competitive manner. Here, we demonstrate that common CaMKII inhibitors alter PKC and CaM interactions with AKAP79(31-52). Most notably, the classical CaMKII inhibitors KN-93 and KN-62 potently enhanced the association of CaM to AKAP79(31-52) in the absence (apoCaM) but not the presence of Ca(2+). In contrast, apoCaM association to AKAP79(31-52) was unaffected by the control compound KN-92 or a mechanistically distinct CaMKII inhibitor (CaMKIINtide). In vitro studies demonstrated that KN-62 and KN-93, but not the other compounds, led to apoCaM-dependent displacement of PKC from AKAP79(31-52). In the absence of CaMKII activation, complementary cellular studies revealed that KN-62 and KN-93, but not KN-92 or CaMKIINtide, inhibited PKC-mediated phosphorylation of GluA1 in hippocampal neurons as well as AKAP79-dependent PKC-mediated augmentation of recombinant GluA1 currents. Buffering cellular CaM attenuated the ability of KN-62 and KN-93 to inhibit AKAP79-anchored PKC regulation of GluA1. Therefore, by favoring apoCaM binding to AKAP79, KN-62 and KN-93 derail the ability of AKAP79 to efficiently recruit PKC for regulation of GluA1. Thus, AKAP79 endows PKC with a pharmacological profile that overlaps with CaMKII.  相似文献   

4.
Enhancement of AMPA receptor activity in response to synaptic plasticity inducing stimuli may arise, in part, through phosphorylation of the GluR1 AMPA receptor subunit at Ser-831. This site is a substrate for both Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC). However, neuronal protein levels of CaMKII may exceed those of PKC by an order of magnitude. Thus, it is unclear how PKC could effectively regulate this common target site. The multivalent neuronal scaffold A-kinase-anchoring protein 79 (AKAP79) is known to bind PKC and is linked to GluR1 by synapse-associated protein 97 (SAP97). Here, biochemical studies demonstrate that AKAP79 localizes PKC activity near the receptor, thus accelerating Ser-831 phosphorylation. Complementary electrophysiological studies indicate that AKAP79 selectively shifts the dose-dependence for PKC modulation of GluR1 receptor currents approximately 20-fold, such that low concentrations of PKC are as effective as much higher CaMKII concentrations. By boosting PKC activity near a target substrate, AKAP79 provides a mechanism to overcome limitations in kinase abundance thereby ensuring faithful signal propagation and efficient modification of AMPA receptor-mediated responses.  相似文献   

5.
Hyperammonemia contributes to altered neurotransmission and cognition in patients with hepatic encephalopathy. Hyperammonemia in rats affects differently high- and low-affinity AMPA receptors (AMPARs) in cerebellum. We hypothesized that hyperammonemia would alter differently membrane expression of AMPARs GluA1 and GluA2 subunits by altering its phosphorylation. This work aims were: 1) assess if hyperammonemia alters GluA1 and GluA2 subunits membrane expression in cerebellum and 2) analyze the underlying mechanisms.Hyperammonemia reduces membrane expression of GluA2 and enhances membrane expression of GluA1 in vivo. We show that changes in GluA2 and GluA1 membrane expression in hyperammonemia would be due to enhanced NMDA receptors activation which reduces cGMP levels and phosphodiesterase 2 (PDE2) activity, resulting in increased cAMP levels. This leads to increased protein kinase A (PKA) activity which activates phospholipase C (PLC) and protein kinase C (PKC) thus increasing phosphorylation of GluA2 in Ser880, which reduces GluA2 membrane expression, and phosphorylation of GluA1 in Ser831, which increases GluA1 membrane expression. Blocking NMDA receptors or inhibiting PKA, PLC or PKC normalizes GluA2 and GluA1 phosphorylation and membrane expression in hyperammonemic rats.Altered GluA2 and GluA1 membrane expression would alter signal transduction which may contribute to cognitive and motor alterations in hyperammonemia and hepatic encephalopathy.  相似文献   

6.
Direct phosphorylation of the GluR1 subunit of postsynaptic AMPA receptors by Ca(2+)/calmodulin-dependent protein kinase II (CaM-KII) is believed to be one of the major contributors to the enhanced strength of glutamatergic synapses in CA1 area of hippocampus during long-term potentiation. The molecular mechanism of AMPA receptor regulation by CaM-KII is examined here by a novel approach, silence analysis, which is independent of previously used variance analysis. I show that three fundamental channel properties-single-channel conductance, channel open probability, and the number of functional channels-can be measured in an alternative way, by analyzing the probability of channels to be simultaneously closed (silent). Validity of the approach was confirmed by modeling, and silence analysis was applied then to the GluR1 AMPA receptor mutated at S831, the site phosphorylated by CaM-KII during long-term potentiation. Silence analysis indicates that a negative charge at S831 is a critical determinant for the enhanced channel function as a charge carrier. Silence and variance analyses, when applied to the same sets of data, were in agreement on the receptor regulation upon mutations. These results provide independent evidences for the mechanism of AMPA receptor regulation by CaM-KII and further strengthens the idea how calcium-dependent phosphorylation of AMPA receptors can contribute to the plasticity at central glutamatergic synapses.  相似文献   

7.
Increasing evidence supports the critical role of α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) glutamate receptors in psychostimulant action. These receptors are regulated via a phosphorylation‐dependent mechanism in their trafficking, distribution, and function. The hippocampus is a brain structure important for learning and memory and is emerging as a critical site for processing psychostimulant effects. To determine whether the hippocampal pool of AMPA receptors is regulated by stimulants, we investigated and characterized the impact of amphetamine (AMPH) on phosphorylation of AMPA receptors in the adult rat hippocampus in vivo. We found that AMPH markedly increased phosphorylation of AMPA receptor GluA1 subunits at serine 845 (S845) in the hippocampus. The effect of AMPH was dose dependent. A single dose of AMPH induced a rapid and transient increase in S845 phosphorylation. Among different hippocampal subfields, AMPH primarily elevated S845 phosphorylation in the Cornu Ammonis area 1 and dentate gyrus. In contrast to S845, serine 831 phosphorylation of GluA1 and serine 880 phosphorylation of GluA2 were not altered by AMPH. In addition, surface expression of hippocampal GluA1 was up‐regulated, while the amount of intracellular GluA1 fraction was concurrently reduced in response to AMPH. GluA2 protein levels in either the surface or intracellular pool were insensitive to AMPH. These data demonstrate that the AMPA receptor in the hippocampus is sensitive to dopamine stimulation. Acute AMPH administration induces dose‐, time‐, site‐, and subunit‐dependent phosphorylation of AMPA receptors and facilitates surface trafficking of GluA1 AMPA receptors in hippocampal neurons in vivo.

  相似文献   


8.
Stimulation of hippocampal 5-HT(1A) receptors impairs memory retention. The highly selective 5-HT(1A) antagonist, WAY-100635, prevents the cognitive deficits induced not only by 5-HT(1A) stimulation but also by cholinergic or NMDA receptor blockade. On this basis, the effects of WAY-100635 on molecular events associated with memory storage were explored. In rat hippocampus, WAY-100635 produced a rapid increase in phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and in Ca(2+)-independent CaMKII and protein kinase A (PKA) enzyme activity. This increase was followed a few hours later by an enhanced membrane expression of AMPA receptor subunits, especially of the GluR1 subunit phosphorylated at the CaMKII site, pGluR1(Ser831). The same qualitative effects were found with the weaker 5-HT(1A) antagonist NAN-190. The effects of both antagonists were no longer apparent in rats with a previous 5-HT depletion induced by the tryptophan hydroxylase inhibitor p-chlorophenylalanine (PCPA), suggesting that 5-HT(1A) receptor blockade removes the tonic inhibition of 5-HT through 5-HT(1A) receptor stimulation on excitatory hippocampal neurons, with the consequent increase in PKA activity. In addition, administration of WAY-100635 potentiated the learning-specific increase in the hippocampus of phospho-CaMKII, Ca(2+)-independent CaMKII activity, as well as the phosphorylation of either the CaMKII or the PKA site on the AMPA receptor GluR1 subunit. This study suggests that blockade of hippocampal 5-HT(1A) receptors favours molecular events critically involved in memory formation, and provides an in vivo molecular basis for the proposed utility of 5-HT(1A) receptor antagonists in the treatment of cognitive disorders.  相似文献   

9.
The use of hippocampal dissociated neuronal cultures has enabled the study of molecular changes in endogenous native proteins associated with long-term potentiation. Using immunofluorescence labelling of the active (Thr286-phosphorylated) alpha-Ca(2+) /calmodulin-dependent protein kinase II (CaMKII) we found that CaMKII activity was increased by transient (3?×?1?s) depolarisation in 18- to 21-day-old cultures but not in 9- to 11-day-old cultures. The increase in Thr286 phosphorylation of CaMKII required the activation of NMDA receptors and was greatly attenuated by the CaMKII inhibitor KN-62. We compared the effects of transient depolarisation on the surface expression of GluA1 and GluA2 subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor and found a preferential recruitment of the GluA1 subunit. CaMKII inhibition prevented this NMDA receptor-dependent delivery of GluA1 to the cell surface. CaMKII activation is therefore an important factor in the activity-dependent recruitment of native GluA1 subunit-containing alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors to the cell surface of hippocampal neurons.  相似文献   

10.
Phosphorylation at glutamate receptor subunit 1(GluR1) Ser845 residue has been widely accepted to involve in GluR1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking, but the in vivo evidence has not yet been established. One of the main obstacles is the lack of effective methodologies to selectively target phosphorylation at single amino acid residue. In this study, the Escherichia  coli -expressed glutathione- S -transferase-tagged intracellular carboxyl-terminal domain of GluR1 (cGluR1) was phosphorylated by protein kinase A for in vitro selection. We have successfully selected aptamers which effectively bind to phospho-Ser845 cGluR1 protein, but without binding to phospho-Ser831 cGluR1 protein. Moreover, pre-binding of the unphospho-cGluR1 protein with these aptamers inhibits protein kinase A-mediated phosphorylation at Ser845 residue. In contrast, the pre-binding of aptamer A2 has no effect on protein kinase C-mediated phosphorylation at Ser831 residue. Importantly, the representative aptamer A2 can effectively bind the mammalian GluR1 that inhibited GluR1/GluR1-containing AMPA receptor trafficking to the cell surface and abrogated forskolin-stimulated phosphorylation at GluR1 Ser845 in both green fluorescent protein–GluR1-transfected human embryonic kidney cells and cultured rat cortical neurons. The strategy to use aptamer to modify single-residue phosphorylation is expected to facilitate evaluation of the potential role of AMPA receptors in various forms of synaptic plasticity including that underlying psychostimulant abuse.  相似文献   

11.
Impairments of cellular plasticity appear to underlie the pathophysiology of major depression. Recently, elevated levels of phosphorylated AMPA receptor were implicated in the antidepressant effect of various drugs. Here, we investigated the effects of an antidepressant, Tianeptine, on synaptic function and GluA1 phosphorylation using murine hippocampal slices and in vivo single-unit recordings. Tianeptine, but not imipramine, increased AMPA receptor-mediated neuronal responses both in vitro and in vivo, in a staurosporine-sensitive manner. Paired-pulse ratio was unaltered by Tianeptine, suggesting a postsynaptic site of action. Tianeptine, 10 μM, enhanced the GluA1-dependent initial phase of LTP, whereas 100 μM impaired the latter phases, indicating a critical role of GluA1 subunit phosphorylation in the excitation. Tianeptine rapidly increased the phosphorylation level of Ser831-GluA1 and Ser845-GluA1. Using H-89 and KN-93, we show that the activation of both PKA and CaMKII is critical in the effect of Tianeptine on AMPA responses. Moreover, the phosphorylation states of Ser217/221-MEK and Thr183/Tyr185-p42MAPK were increased by Tianeptine and specific kinase blockers of the MAPK pathways (PD 98095, SB 203580 and SP600125) prevented the effects of Tianeptine. Overall these data suggest that Tianeptine potentiates several signaling cascades associated with synaptic plasticity and provide further evidence that a major mechanism of action for Tianeptine is to act as an enhancer of glutamate neurotransmission via AMPA receptors.  相似文献   

12.
Postsynaptic interactions between dopamine and glutamate receptors in the nucleus accumbens are critical for acute responses to drugs of abuse and for neuroadaptations resulting from their chronic administration. We tested the hypothesis that D(1) dopamine receptor stimulation increases phosphorylation of the AMPA receptor subunit GluR1 at the protein kinase A phosphorylation site (Ser845). Nucleus accumbens cell cultures were prepared from postnatal day 1 rats. After 14 days in culture, GluR1 phosphorylation was measured by western blotting using phosphorylation site-specific antibodies. The D(1) receptor agonist SKF 81297 increased Ser845 phosphorylation in a concentration- dependent manner, with marked increases occurring within 5 min. This was prevented by the D(1) receptor antagonist SCH 23390 and the protein kinase A inhibitor H89, and reproduced by forskolin. The D(2) receptor agonist quinpirole attenuated the response to D(1) receptor stimulation. Neither D(1) nor D(2) receptor agonists altered GluR1 phosphorylation at Ser831, the site phosphorylated by protein kinase C and calcium/calmodulin-dependent protein kinase II. In other systems, phosphorylation of GluR1 at Ser845 is associated with enhancement of AMPA receptor currents. Thus, the present results suggest that AMPA receptor transmission in the nucleus accumbens may be augmented by concurrent D(1) receptor stimulation.  相似文献   

13.
Ba M  Kong M  Yang H  Ma G  Lu G  Chen S  Liu Z 《Neurochemical research》2006,31(11):1337-1347
Recent evidence has linked striatal amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor function to the adverse effects of long-term dopaminergic treatment in Parkinson’s disease. The phosphorylation of AMPA subunit, GluR1, reflects AMPA receptor activity. To determine whether serine phosphorylation of GluR1 subunit by activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) contributes to the process, we examined the effects of unilateral nigrostriatal depletion with 6-hydroxydopamine and subsequent l-dopa treatment on motor responses and phosphorylation states. Three weeks of l-dopa administration to rats shortened the duration of the rotational response. We found a significant reduction in the abundance of both phosphorylated GluR1 at serine-831 site (pGluR1S831) and GluR1 in the cell plasma membrane of lesioned striatum. Chronic treatment of lesioned rats with l-dopa markedly upregulated the phosphorylation of GluR1 in lesioned striatum with a concomitant normalization of the plasma membrane GluR1 abundance, which lasted at least 1 day after withdrawal of chronic l-dopa treatment. Our immunostaining data showed that these changes were confined to parvalbumin-positive neurons where GluR1 subunits are exclusively expressed. Both the altered motor response duration and the degree of pGluR1S831 were attenuated by the intrastriatal administration of CaMKII inhibitor KN-93. These findings suggest that activation of CaMKII contributes to both development and maintenance of motor response duration alterations, through a mechanism that involves an increase in pGluR1S831 within parvalbumin-positive neurons.Maowen Ba and Min Kong are contributed equally to this work.  相似文献   

14.
In the striatum, stimulation of dopamine D2 receptors results in attenuation of glutamate responses. This effect is exerted in large part via negative regulation of AMPA glutamate receptors. Phosphorylation of the GluR1 subunit of the AMPA receptor has been proposed to play a critical role in the modulation of glutamate transmission, in striatal medium spiny neurons. Here, we have examined the effects of blockade of dopamine D2-like receptors on the phosphorylation of GluR1 at the cAMP-dependent protein kinase (PKA) site, Ser845, and at the protein kinase C and calcium/calmodulin-dependent protein kinase II site, Ser831. Administration of haloperidol, an antipsychotic drug with dopamine D2 receptor antagonistic properties, increases the phosphorylation of GluR1 at Ser845, without affecting phosphorylation at Ser831. The same effect is observed using eticlopride, a selective dopamine D2 receptor antagonist. In contrast, administration of the dopamine D2-like agonist, quinpirole, decreases GluR1 phosphorylation at Ser845. The increase in Ser845 phosphorylation produced by haloperidol is abolished in dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) knockout mice, or in mice in which the PKA phosphorylation site on DARPP-32 (i.e. Thr34) has been mutated (Thr34-->Ala mutant mice), and requires tonic activation of adenosine A2A receptors. These results demonstrate that dopamine D2 antagonists increase GluR1 phosphorylation at Ser845 by removing the inhibitory tone exerted by dopamine D2 receptors on the PKA/DARPP-32 cascade.  相似文献   

15.
A serum factor is recognized to interact with a protein kinase C (PKC) pathway. Indeed, treatment with fetal bovine serum enhanced ACh-evoked currents by PKC activation in the neuronal nicotinic ACh receptors (α7) andTorpedoACh receptors expressed inXenopusoocytes. In addition, potentiation of ACh-evoked currents induced by fetal bovine serum was observed also in the mutantTorpedoACh receptors lacking potent PKC phosphorylation sites at Ser333on the α subunit and Ser377on the δ subunit; the potentiation was inhibited by the PKC inhibitor, PKC inhibitor peptide (PKCI), indicating that ACh receptor currents were enhanced by PKC activation but not by PKC phosphorylation of the receptors. On the other hand, fetal bovine serum enhanced kainate-evoked currents in oocytes expressing the α-amino3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, GluR1,3. The enhancement was not affected by the PKC inhibitors, PKCI or GF109203X, and instead, was inhibited by the Ca2+/calmodulin-dependent kinase II (CaMKII) inhibitor, KN-62. These results suggest that serum is not only involved in PKC activation but in CaMKII activation, and that thereby ACh receptor currents and AMPA receptor currents are each potentiated.  相似文献   

16.
Kainate receptors exhibit a highly compartmentalized distribution within the brain; however, the molecular and cellular mechanisms that coordinate their expression at neuronal sites of action are poorly characterized. Here we report that the GluK1 and GluK2 kainate receptor subunits interact with the spectrin-actin binding scaffolding protein 4.1N through a membrane-proximal domain in the C-terminal tail. We found that this interaction is important for the forward trafficking of GluK2a receptors, their distribution in the neuronal plasma membrane, and regulation of receptor endocytosis. The association between GluK2a receptors and 4.1N was regulated by both palmitoylation and protein kinase C (PKC) phosphorylation of the receptor subunit. Palmitoylation of the GluK2a subunit promoted 4.1N association, and palmitoylation-deficient receptors exhibited reduced neuronal surface expression and compromised endocytosis. Conversely, PKC activation decreased 4.1N interaction with GluK2/3-containing kainate receptors in acute brain slices, an effect that was reversed after inhibition of PKC. Our data and previous studies therefore demonstrate that these two post-translational modifications have opposing effects on 4.1N association with GluK2 kainate and GluA1 AMPA receptors. The convergence of the signaling pathways regulating 4.1N protein association could thus result in the selective removal of AMPA receptors from the plasma membrane while simultaneously promoting the insertion and stabilization of kainate receptors, which may be important for tuning neuronal excitability and synaptic plasticity.  相似文献   

17.
Impairments of cellular plasticity appear to underlie the pathophysiology of major depression. Recently, elevated levels of phosphorylated AMPA receptor were implicated in the antidepressant effect of various drugs. Here, we investigated the effects of an antidepressant, Tianeptine, on synaptic function and GluA1 phosphorylation using murine hippocampal slices and in vivo single-unit recordings. Tianeptine, but not imipramine, increased AMPA receptor-mediated neuronal responses both in vitro and in vivo, in a staurosporine-sensitive manner. Paired-pulse ratio was unaltered by Tianeptine, suggesting a postsynaptic site of action. Tianeptine, 10 μM, enhanced the GluA1-dependent initial phase of LTP, whereas 100 μM impaired the latter phases, indicating a critical role of GluA1 subunit phosphorylation in the excitation. Tianeptine rapidly increased the phosphorylation level of Ser831-GluA1 and Ser845-GluA1. Using H-89 and KN-93, we show that the activation of both PKA and CaMKII is critical in the effect of Tianeptine on AMPA responses. Moreover, the phosphorylation states of Ser217/221-MEK and Thr183/Tyr185-p42MAPK were increased by Tianeptine and specific kinase blockers of the MAPK pathways (PD 98095, SB 203580 and SP600125) prevented the effects of Tianeptine. Overall these data suggest that Tianeptine potentiates several signaling cascades associated with synaptic plasticity and provide further evidence that a major mechanism of action for Tianeptine is to act as an enhancer of glutamate neurotransmission via AMPA receptors.  相似文献   

18.
Modulation of αCaMKII expression and phosphorylation is a feature shared by drugs of abuse with different mechanisms of action. Accordingly, we investigated whether αCaMKII expression and activation could be altered by self-administration of ketamine, a non-competitive antagonist of the NMDA glutamate receptor, with antidepressant and psychotomimetic as well as reinforcing properties. Rats self-administered ketamine at a sub-anesthetic dose for 43 days and were sacrificed 24 h after the last drug exposure; reward-related brain regions, such as medial prefrontal cortex (PFC), ventral striatum (vS), and hippocampus (Hip), were used for the measurement of αCaMKII-mediated signaling. αCaMKII phosphorylation was increased in these brain regions suggesting that ketamine, similarly to other reinforcers, activates this kinase. We next measured the two main targets of αCaMKII, i.e., GluN2B (S1303) and GluA1 (S831), and found increased activation of GluN2B (S1303) together with reduced phosphorylation of GluA1 (S831). Since GluN2B, via inhibition of ERK, regulates the membrane expression of GluA1, we measured ERK2 phosphorylation in the crude synaptosomal fraction of these brain regions, which was significantly reduced suggesting that ketamine-induced phosphorylation of αCaMKII promotes GluN2B (S1303) phosphorylation that, in turn, inhibits ERK 2 signaling, an effect that results in reduced membrane expression and phosphorylation of GluA1. Taken together, our findings point to αCaMKII autophosphorylation as a critical signature of ketamine self-administration providing an intracellular mechanism to explain the different effects caused by αCaMKII autophosphorylation on the post-synaptic GluN2B- and GluA1-mediated functions. These data add ketamine to the list of drugs of abuse converging on αCaMKII to sustain their addictive properties.  相似文献   

19.
The GluA2 subunit of the AMPA receptor (AMPAR) dominantly blocks AMPAR Ca2+ permeability, and its trafficking to the synapse regulates AMPAR-dependent synapse Ca2+ permeability. Here we show that GluA2 trafficking from the endoplasmic reticulum (ER) to the plasma membrane of cultured hippocampal neurons requires Ca2+ release from internal stores, the activity of Ca2+/calmodulin activated kinase II (CaMKII), and GluA2 interaction with the PDZ protein, PICK1. We show that upon Ca2+ release from the ER via the IP3 and ryanodine receptors, CaMKII that is activated enters a complex that contains PICK1, dependent upon the PICK1 BAR (Bin-amphiphysin-Rvs) domain, and that interacts with the GluA2 C-terminal domain and stimulates GluA2 ER exit and surface trafficking. This study reveals a novel mechanism of regulation of trafficking of GluA2-containing receptors to the surface under the control of intracellular Ca2+ dynamics and CaMKII activity.  相似文献   

20.
Agonist responses and channel kinetics of native α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors are modulated by transmembrane accessory proteins. Stargazin, the prototypical accessory protein, decreases desensitization and increases agonist potency at AMPA receptors. Furthermore, in the presence of stargazin, the steady-state responses of AMPA receptors show a gradual decline at higher glutamate concentrations. This “autoinactivation” has been assigned to physical dissociation of the stargazin-AMPA receptor complex and suggested to serve as a protective mechanism against overactivation. Here, we analyzed autoinactivation of GluA1–A4 AMPA receptors (all flip isoform) expressed in the presence of stargazin. Homomeric GluA1, GluA3, and GluA4 channels showed pronounced autoinactivation indicated by the bell-shaped steady-state dose response curves for glutamate. In contrast, homomeric GluA2i channels did not show significant autoinactivation. The resistance of GluA2 to autoinactivation showed striking dependence on the splice form as GluA2-flop receptors displayed clear autoinactivation. Interestingly, the resistance of GluA2-flip containing receptors to autoinactivation was transferred onto heteromeric receptors in a dominant fashion. To examine the relationship of autoinactivation to physical separation of stargazin from the AMPA receptor, we analyzed a GluA4-stargazin fusion protein. Notably, the covalently linked complex and separately expressed proteins expressed a similar level of autoinactivation. We conclude that autoinactivation is a subunit and splice form dependent property of AMPA receptor-stargazin complexes, which involves structural rearrangements within the complex rather than any physical dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号