共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor tyrosine kinase transmembrane domains: Function,dimer structure and dimerization energetics
The transmembrane (TM) domains of receptor tyrosine kinases (RTKs) play an active role in signaling. They contribute to the stability of full-length receptor dimers and to maintaining a signaling-competent dimeric receptor conformation. In an exciting new development, two structures of RTK TM domains have been solved, a break-through achievement in the field. Here we review these structures, and we discuss recent studies of RTK TM domain dimerization energetics, possible synergies between domains, and the effects of pathogenic RTK TM mutations on structure and dimerization.Key words: transmembrane domain, dimerization thermodynamics, receptor tyrosine kinases, pathogenic mutations, dimer structure 相似文献
2.
Rotational coupling of the transmembrane and kinase domains of the Neu receptor tyrosine kinase 下载免费PDF全文
Bell CA Tynan JA Hart KC Meyer AN Robertson SC Donoghue DJ 《Molecular biology of the cell》2000,11(10):3589-3599
Ligand binding to receptor tyrosine kinases (RTKs) regulates receptor dimerization and activation of the kinase domain. To examine the role of the transmembrane domain in regulation of RTK activation, we have exploited a simplified transmembrane motif, [VVVEVVV](n), previously shown to activate the Neu receptor. Here we demonstrate rotational linkage of the transmembrane domain with the kinase domain, as evidenced by a periodic activation of Neu as the dimerization motif is shifted across the transmembrane domain. These results indicate that activation requires a specific orientation of the kinase domains with respect to each other. Results obtained with platelet-derived growth factor receptor-beta suggest that this rotational linkage of the transmembrane domain to the kinase domain may be a general feature of RTKs. These observations suggest that activating mutations in RTK transmembrane and juxtamembrane domains will be limited to those residues that position the kinase domains in an allowed rotational conformation. 相似文献
3.
Role of receptor tyrosine kinase transmembrane domains in cell signaling and human pathologies 总被引:8,自引:0,他引:8
Receptor tyrosine kinases (RTKs) conduct biochemical signals via lateral dimerization in the plasma membrane, and their transmembrane (TM) domains play an important role in the dimerization process. Here we present two models of RTK-mediated signaling, and we discuss the role of the TM domains within the framework of these two models. We summarize findings of single-amino acid mutations in RTK TM domains that induce unregulated signaling and, as a consequence, pathological phenotypes. We review the current knowledge of pathology induction mechanisms due to these mutations, focusing on the structural and thermodynamic basis of pathogenic dimer stabilization. 相似文献
4.
G Carpenter 《FASEB journal》1992,6(14):3283-3289
Among the intracellular milieu of proteins are molecules with defined biochemical functions that serve as substrates for ligand-activated tyrosine kinase receptors. It seems likely that some of these substrate molecules are elements of a critical signaling pathway used by growth factors to control cell proliferation and subverted by oncogenes to deregulate this process. Although the process of cell growth and division is relatively slow compared with other hormonally regulated responses, homeostasis in a human being requires approximately 20 x 10(6) cell divisions per second for the renewal of various cell populations. This review summarizes the present understanding of tyrosine kinase substrates that seem likely to have key roles in the signal transduction pathway that regulates cell proliferation. This includes structural features of these molecules, the influence of tyrosine phosphorylation on their functions, the biological roles of these proteins, and the capacity of these substrates to associate with activated receptor tyrosine kinases. 相似文献
5.
The RTKs are one of the most important families mediating transmembrane signaling and they participate and are instrumental in regulating a broad range of physiological activities. Indeed, tyrosine kinases in general, and the processes that they control and/or stimulate, provide a rich source of drug targets, particularly in growth related disorders such as cancer (Zwick et al., 2002; Krause and Van Etten, 2005). However, there remain many questions regarding their activation and downstream signaling and the application of proteomic analyses promises to answer many of them. There have been relatively few detailed studies of this type to date and it will require considerably more of them to better define the pathways with respect to both the major and minor PTMs that, along with the protein-protein interactions, are the means to direct the flow of the signals generated. It will take such approaches to define the specificity that characterize the individual families, even appreciating that to some degree all are capable of activating many, if not all, of the principal pathways. It will also be necessary to understand, in the highly complex networks of intracellular phosphorylation (that contain thousands of sites of modification and clearly have not yet been fully determined in any paradigm), exactly which kinases modify which substrates, and to work out the inter-relationships with other modifications such as O-GlcNAcylation and acetylation. Only then will it be possible to determine which modifications are physiologically significant and which are simply background. Along theway, these studies should continue to provide potential drug targets and perhaps improve the current lackluster biomarker discovery track record. 相似文献
6.
RON is a transmembrane receptor tyrosine kinase that mediates biological activities of Macrophage Stimulating Protein (MSP). MSP is a multifunctional factor regulating cell adhesion, motility, growth and survival. MSP binding to RON causes receptor tyrosine phosphorylation leading to up-regulation of RON catalytic activity and subsequent activation of downstream signaling molecules. Recent studies show that RON is spatially and functionally associated with other transmembrane molecules including adhesion receptors integrins and cadherins, and cytokine and growth factor receptors IL-3 betac, EPOR and MET. For example, MSP-induced cell shape change is mediated via RON-activated IL-3 betac receptor. Activation of integrins causes MSP-independent RON phosphorylation, and the integrin/RON collaboration regulates cell survival. Thus, RON can be activated without MSP by ligand stimulation of RON-associated receptors, and MSP-activated RON can cause ligand-independent activation of RON-associated receptors. As a result of the receptor cross-activation RON-specific pathways become a part of a signal transduction network of other receptors, and conversely signaling pathways activated by other receptors can be used by RON. This receptor collaboration extends the spectrum of cellular responses generated by MSP and by putative ligands of RON-associated receptors. However signaling pathways involved in the receptor cross-talk and underlying activation mechanisms remain to be investigated. The purpose of this review is to summarize data and to discuss a role of cross-talk between RON and other transmembrane receptors. 相似文献
7.
The neuropeptide bombesin is known for its potent mitogenic activity on murine 3T3 fibroblasts and other cells. Recently it has been implicated in the pathogenesis of small cell lung carcinoma, in which it acts through an autocrine loop of growth stimulation. Phosphotyrosine (P-Tyr) antibodies have been successfully used to recognize the autophosphorylated receptors for known growth factors. In Swiss 3T3 fibroblasts, phosphotyrosine antibodies identified a 115,000-Mr cell surface protein (p115) that became phosphorylated on tyrosine as a specific response to bombesin stimulation of quiescent cells. The extent of phosphorylation was dose dependent and correlated with the mitogenic effect induced by bombesin, measured by [3H]thymidine incorporation. Tyrosine phosphorylation of p115 was detectable minutes after the addition of bombesin, and its time course paralleled that described for the binding of bombesin to its receptor. Immunocomplexes of phosphorylated p115 and phosphotyrosine antibodies bound 125I-labeled [Tyr4]bombesin in a specific and saturable manner and displayed an associated tyrosine kinase activity enhanced by bombesin. Furthermore, the 125I-labeled bombesin analog gastrin-releasing peptide, bound to intact live cells, was coprecipitated with p115. These data strongly suggest that p115 participates in the structure and function of the surface receptor for bombesin, a new member of the family of growth factor receptors with associated tyrosine kinase activity. 相似文献
8.
Receptor tyrosine kinases (RTKs) are single-span transmembrane receptors in which relatively conserved intracellular kinase domains are coupled to divergent extracellular modules. The extracellular domains initiate receptor signaling upon binding to either soluble or membrane-embedded ligands. The diversity of extracellular domain structures allows for coupling of many unique signaling inputs to intracellular tyrosine phosphorylation. The combinatorial power of this receptor system is further increased by the fact that multiple ligands can typically interact with the same receptor. Such ligands often act as biased agonists and initiate distinct signaling responses via activation of the same receptor. Mechanisms behind such biased agonism are largely unknown for RTKs, especially at the level of receptor–ligand complex structure. Using recent progress in understanding the structures of active RTK signaling units, we discuss selected mechanisms by which ligands couple receptor activation to distinct signaling outputs. 相似文献
9.
Li WX 《Cell cycle (Georgetown, Tex.)》2004,3(3):249-251
Primordial germ cells (PGCs) give rise to sperms and eggs. Their development is crucial to species propagation and has to be precisely controlled. Studies in several model organisms have identified many genes involved in the specification and guided migration of PGCs. However, the mechanisms governing the behaviors of these unique cells remain to be investigated. Interestingly, PGCs share certain cellular properties with metastasizing cancer cells including proliferation, invasion of other tissues, survival and migration. Recently we have shown that in Drosophila the receptor tyrosine kinase Torso activates both STAT and Ras during the early phase of PGC development. In later stages, activation of both STAT and Ras, likely by other molecules, is required continuously for PGC migration. The requirement for RTK suggests molecular conservation between flies and mice in PGC development and also suggests that germ cells and cancer cells share certain intracellular signaling strategies. 相似文献
10.
11.
Kazuhito Satomura Anna R. Derubeis Neal S. Fedarko Kyomi Ibaraki-O'Connor Sergei A. Kuznetsov David W. Rowe Marian F. Young Pamela Gehron Robey 《Journal of cellular physiology》1998,177(3):426-438
Bone marrow stromal cells (BMSCs) are a heterogeneous population of cells derived from colony-forming units-fibroblastic (CFU-Fs). These cells reside in the bone marrow cavity and are capable of differentiating into several cell phenotypes including osteoblasts, chondroblasts, hematopoiesis-supporting stromal cells, and adipocytes. However, the factors that regulate the proliferation and differentiation of the BMSC population are for the most part unknown. Since many members of the receptor tyrosine kinase (RTK) family have been shown to participate in growth control of various mesenchymal cell populations, in this study we examined the expression and function of RTKs in the BMSC population. Degenerate oligonucleotides corresponding to two conserved catalytic domains of the RTK family and RT-PCR were used initially to determine which RTKs are expressed in the human BMSC (hBMSC) system. After subcloning the amplification product generated from mRNA of a multicolony-derived hBMSC strain, PDGF receptor (β), EGF receptor, FGF receptor 1, and Axl were identified by DNA sequencing of 26 bacterial colonies. Furthermore, PDGF and EGF were found to enhance BMSC growth in a dose-dependent manner and to induce tyrosine phosphorylation of intracellular molecules, including the PDGF and EGF receptors themselves, demonstrating the functionality of these receptors. On the other hand, bFGF was found to have little effect on proliferation or tyrosine phosphorylation. Since single colony-derived hBMSC strains are known to vary from one colony to another in colony habit (growth rate and colony structure) and the ability to form bone in vivo, the expression levels of these RTKs were determined in 18 hBMSC clonal strains by semiquantitative RT-PCR and were found to vary from one clonal strain to another. While not absolutely predictive of the osteogenic capacity of individual clonal strains, on average, relatively high levels of PDGF-receptor were found in bone-forming strains, while on average, nonbone-forming strains had relatively high levels of EGF-receptor. Taken together, these results indicate that RTKs play a role in the control of hBMSC proliferation, and that the differential pattern of RTK expression may be useful in correlating the biochemical properties of individual clonal strains with their ability to produce bone in vivo. J. Cell. Physiol. 177:426–438, 1998. © 1998 Wiley-Liss, Inc. 相似文献
12.
Sasaki T Knyazev PG Cheburkin Y Göhring W Tisi D Ullrich A Timpl R Hohenester E 《The Journal of biological chemistry》2002,277(46):44164-44170
Receptor tyrosine kinases of the Axl family are activated by Gas6, the product of growth arrest-specific gene 6. Gas6-Axl signaling is implicated in cell survival, adhesion, and migration. The receptor-binding site of Gas6 is located within a C-terminal pair of laminin G-like (LG) domains that do not resemble any other receptor tyrosine kinase ligand. We report the crystal structure at 2.2-A resolution of a Gas6 fragment spanning both LG domains (Gas6-LG). The structure reveals a V-shaped arrangement of LG domains strengthened by an interdomain calcium-binding site. LG2 of Gas6-LG contains two unusual features: an alpha-helix cradled by one edge of the LG beta-sandwich and a conspicuous patch of surface-exposed hydrophobic residues. Mutagenesis of some residues in this patch reduces Gas6-LG binding to the extracellular domain of Axl as well as Axl activation in glioblastoma cells, identifying a component of the receptor-binding site of Gas6. 相似文献
13.
Tsujikawa K Ichijo T Moriyama K Tadotsu N Sakamoto K Sakane N Fukada S Furukawa T Saito H Yamamoto H 《Molecular cancer research : MCR》2002,1(2):155-163
Leukocyte common antigen-related molecule (LAR) is a receptor-like protein tyrosine phosphatase (PTPase) with two PTPase domains. In the present study, we detected the expression of LAR in the brain, kidney, and thymus of mice using anti-LAR PTPase domain subunit monoclonal antibody (mAb) YU1. In the thymus, LAR was expressed on CD4(-)CD8(-) and CD4(-)CD8(low) thymocytes. The development of thymocytes in CD45 knockout mice is blocked partially in the maturation of CD4(-)CD8(-) to CD4(+)CD8(+). We postulated that LAR regulates Lck and Fyn in the immature thymocytes. Transfection of wild-type LAR activated extracellular signal-regulated kinase signal transduction pathway in CD45-deficient Jurkat cells stimulated with anti-CD3 mAb. LAR mutants, with Cys to Ser mutation in the catalytic center of PTPase D1, bound to tyrosine-phosphorylated Lck and Fyn, and LAR PTPase domain 2 was tyrosine phosphorylated by Fyn tyrosine kinase. The phosphorylated LAR was associated with Fyn Src homology 2 domain. Moreover, LAR dephosphorylated phosphorylated tyrosine residues in both the COOH terminus and kinase domain of Fyn in vitro. Our results indicate that Lck and Fyn would be substrates of LAR in immature thymocytes and that each LAR PTPase domain plays distinct functional roles in phosphorylation and dephosphorylation. 相似文献
14.
Sally-Anne Stephenson Stefan Slomka Evelyn L Douglas Peter J Hewett Jennifer E Hardingham 《BMC molecular biology》2001,2(1):15-9
Background
We have used commercially available cDNA arrays to identify EphB4 as a gene that is up-regulated in colon cancer tissue when compared with matched normal tissue from the same patient. 相似文献15.
Dominique Rousset François Agnès Philippe Lachaume Catherine André Francis Galibert 《Journal of molecular evolution》1995,41(4):421-429
Receptor tyrosine kinases (RTK) with five, three, or seven immunoglobulinlike domains in their extracellular regions are classified as subclasses III, IV, and V, respectively. Conservation of the exon/intron structure of the downstream part of the human KIT, FMS, and FLT3 genes that encode RTK of subclass III together with the particular chromosomal localization of these genes suggests that RTKIII genes have evolved from a common ancestor by cis and trans duplications. To strengthen this model of evolution and to determine if it can be extended to RTKIV and V genes, we constructed a phylogenetic tree of RTKIII, IV, and V on the basis of a multiple alignment of their catalytic tyrosine kinase domain sequences and determined the exon/intron structure of PDGFRA (subclass III), FGFR4 (subclass IV), and FLT4 (subclass V) genes in their downstream part. Phylogenetic analyses with amino acid or nucleotide sequences both resulted in one most parsimonious tree. The phylogenetic trees obtained indicate that all three subclasses are well individuated and that RTKIII and RTKV are closer to each other than RTKIV. Furthermore, RTKIII and FLT4 (subclass V) genes possess the same exon/intron structure in their downstream part while the structure of the RTKIV genes is very similar to that of RTKIII and FLT4. Both approaches are in complete agreement and indicate that RTKIII, IV, and V genes most probably evolved from a common ancestor already in pieces by successive duplications involving entire genes.Correspondence to: F. Agnès 相似文献
16.
Justin M. Roberts Sreya Tarafdar Raji E. Joseph Amy H. Andreotti Thomas E. Smithgall John R. Engen Thomas E. Wales 《Protein science : a publication of the Protein Society》2016,25(4):852-864
The Src Homology 3 (SH3) domain is an important regulatory domain found in many signaling proteins. X‐ray crystallography and NMR structures of SH3 domains are generally conserved but other studies indicate that protein flexibility and dynamics are not. We previously reported that based on hydrogen exchange mass spectrometry (HX MS) studies, there is variable flexibility and dynamics among the SH3 domains of the Src‐family tyrosine kinases and related proteins. Here we have extended our studies to the SH3 domains of the Tec family tyrosine kinases (Itk, Btk, Tec, Txk, Bmx). The SH3 domains of members of this family augment the variety in dynamics observed in previous SH3 domains. Txk and Bmx SH3 were found to be highly dynamic in solution by HX MS and Bmx was unstructured by NMR. Itk and Btk SH3 underwent a clear EX1 cooperative unfolding event, which was localized using pepsin digestion and mass spectrometry after hydrogen exchange labeling. The unfolding was localized to peptide regions that had been previously identified in the Src‐family and related protein SH3 domains, yet the kinetics of unfolding were not. Sequence alignment does not provide an easy explanation for the observed dynamics behavior, yet the similarity of location of EX1 unfolding suggests that higher‐order structural properties may play a role. While the exact reason for such dynamics is not clear, such motions can be exploited in intra‐ and intermolecular binding assays of proteins containing the domains. 相似文献
17.
Ross C. Overman Judit E. Debreczeni Caroline M. Truman Mark S. McAlister Teresa K. Attwood 《Protein science : a publication of the Protein Society》2014,23(5):627-638
The EphB receptors have key roles in cell morphology, adhesion, migration and invasion, and their aberrant action has been linked with the development and progression of many different tumor types. Their conflicting expression patterns in cancer tissues, combined with their high sequence and structural identity, present interesting challenges to those seeking to develop selective therapeutic molecules targeting this large receptor family. Here, we present the first structure of the EphB1 tyrosine kinase domain determined by X‐ray crystallography to 2.5Å. Our comparative crystalisation analysis of the human EphB family kinases has also yielded new crystal forms of the human EphB2 and EphB4 catalytic domains. Unable to crystallize the wild‐type EphB3 kinase domain, we used rational engineering (based on our new structures of EphB1, EphB2, and EphB4) to identify a single point mutation which facilitated its crystallization and structure determination to 2.2 Å. This mutation also improved the soluble recombinant yield of this kinase within Escherichia coli, and increased both its intrinsic stability and catalytic turnover, without affecting its ligand‐binding profile. The partial ordering of the activation loop in the EphB3 structure alludes to a potential cis‐phosphorylation mechanism for the EphB kinases. With the kinase domain structures of all four catalytically competent human EphB receptors now determined, a picture begins to emerge of possible opportunities to produce EphB isozyme‐selective kinase inhibitors for mechanistic studies and therapeutic applications. 相似文献
18.
19.
Chan B Yuan HT Ananth Karumanchi S Sukhatme VP 《Biochemical and biophysical research communications》2008,371(3):475-479
Tie-1 is an endothelial specific cell surface protein whose biology remains poorly understood. Using an overexpression system in vitro, we examined whether Tie-1 activity in endothelial cells in vitro would elicit a proinflammatory response. We found that when overexpressed in endothelial cells in vitro, Tie-1 is tyrosine-phosphorylated. We also showed that Tie-1 upregulates VCAM-1, E-selectin, and ICAM-1, partly through a p38-dependent mechanism. Interestingly, upregulation of VCAM-1 and E-selectin by Tie-1 is significantly higher in human aortic endothelial cells than in human umbilical vein endothelial cells. Additionally, attachment of cells of monocytic lineage to endothelial cells is also enhanced by Tie-1 expression. Collectively, our data show that Tie-1 has a proinflammatory property and may play a role in the endothelial inflammatory diseases such as atherosclerosis. 相似文献
20.
CRINKLY4 (CR4) is a plant serine–threonine receptor kinase. In Zea mays, CR4 functions in the differentiation of the leaf epidermis and the aleurone cell layer and, in Arabidopsis thaliana, the ortholog ACR4 is involved in the development of the integument and seed coat. The Arabidopsis genome also encodes four CR4-related proteins (CRR) whose functions are not known. Based on studies of animal receptor kinase proteins it is likely that the molecular basis of function of CR4 and related proteins is mediated by receptor dimerization. The importance of the transmembrane (TM) domain in the dimerization of several receptor kinases has been demonstrated by the TOXCAT system, a genetic assay that measures helix interactions in a natural membrane environment. In this study, we have used the TOXCAT assay to investigate the potential of the CR4 and CR4-related TM domains to homo-dimerize. Our investigation indicates that the CR4 TM domain and the CRR TM domains have higher propensities for homo-dimerization than the ACR4 TM domain. Interestingly, the dimerization potential of the ACR4 TM domain is significantly weaker even though 13 of 24 amino acids are identical to that of the CR4 TM domain. In order to determine the contributions of specific amino acids to the higher dimerization potential of CR4 compared to ACR4, mutations were made at specific sites in ACR4 TM domain and the strength of the dimer assessed by the TOXCAT assay. One mutation restored the activity to the CR4 level, while other mutations produced either no change or significantly increased the dimerization potential of the ACR4 TM domain. Our results indicate that the TM domains of CR4, ACR4 and the CRR receptor family of proteins have the intrinsic capacity to homo-dimerize, albeit with varying degrees of affinity. 相似文献