首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mammalian LIN complex (LINC) plays important roles in regulation of cell cycle genes. LIN54 is an essential core subunit of the LINC and has a DNA binding region (CHC domain), which consists of two cysteine-rich (CXC) domains separated by a short spacer. We generated various LIN54 mutants, such as CHC deletion mutant, and investigated their subcellular localizations and effects on cell cycle. Wild-type LIN54 was predominantly localized in the nucleus. We identified two nuclear localization signals (NLSs), both of which were required for nuclear localization of LIN54. Interestingly, deletion of one CXC domain resulted in an increased cytoplasmic localization. The cytoplasmic LIN54 mutant accumulated in the nucleus after leptomycin B treatment, suggesting CRM1-mediated nuclear export of LIN54. Point mutations (C525Y and C611Y) in conserved cysteine residues of CXC domain that abolish DNA binding activity also increased cytoplasmic localization. These data suggest that DNA binding activity of LIN54 is required for its nuclear retention. We also found that LIN54C525Y and LIN54C611Y inhibited cell cycle progression and led to abnormal nuclear morphology. Other CXC mutants also induced similar abnormalities in cell cycle progression. LIN54C525Y led to a decreased expression of some G2/M genes, whose expressions are regulated by LINC. This cell cycle inhibition was partially restored by overexpression of wild-type LIN54. These results suggest that abnormal cellular localization of LIN54 may have effects on LINC activity.  相似文献   

2.
3.
The human fibroblast interleukin 1 (IL-1) receptor is a glycosylated transmembrane protein with a cytoplasmic domain of 213 amino acids. We have constructed a series of deletion mutants of the cytoplasmic region of the IL 1 receptor and have used these mutants to examine its role in ligand binding, internalization, signal transduction, and nuclear localization of IL-1. Mutant receptors lacking most of the cytoplasmic domain are expressed at the cell surface and can bind, internalize, and localize IL-1 at the nucleus, but they do not allow IL-1-mediated induction of interleukin 2 and SV40 promoters. We have localized a critical region for signal transduction to a 50-amino acid segment of the cytoplasmic domain of the receptor. These studies demonstrate that IL-1 internalization and nuclear localization are not sufficient to trigger IL-1 activation of gene expression in T-cells.  相似文献   

4.
5.
We report phosphorylated and ubiquitinated aggregates of TAR DNA binding protein of 43 kDa (TDP-43) in SH-SY5Y cells similar to those in brains of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). Two candidate sequences for the nuclear localization signal were examined. Deletion of residues 78-84 resulted in cytoplasmic localization of TDP-43, whereas the mutant lacking residues 187-192 localized in nuclei, forming unique dot-like structures. Proteasome inhibition caused these to assemble into phosphorylated and ubiquitinated TDP-43 aggregates. The deletion mutants lacked the exon skipping activity of cystic fibrosis transmembrane conductance regulator (CFTR) exon 9. Our results suggest that intracellular localization of TDP-43 and proteasomal function may be involved in inclusion formation and neurodegeneration in TDP-43 proteinopathies.  相似文献   

6.
The Saccharomyces cerevisiae non-histone protein 6-A (NHP6A) is a member of the high-mobility group 1/2 protein family that bind and bend DNA of mixed sequence. NHP6A has only one high-mobility group 1/2 DNA binding domain and also requires a 16-amino-acid basic tail at its N-terminus for DNA binding. We show in this report that nuclear accumulation of NHP6A is strictly correlated with its DNA binding properties since only nonhistone protein 6 A–green fluorescent protein chimeras that were competent for DNA binding were localized to the nucleus. Despite the requirement for basic residues within the N-terminal segment for DNA binding and nuclear accumulation, this region does not appear to contain a nuclear localization signal. Moreover, NHP6A does not bind to the yeast nuclear localization signal receptor SRP1 and nuclear targeting of NHP6A does not require the function of the 14 different importins. Unlike histone H2B1 which contains a classical nuclear localization signal, entry of NHP6A into the nucleus was found to be independent of Ran as judged by coexpression of Ran GTPase mutants and was shown to occur at 0 °C after a 15-min induction. These unusual properties lead us to suggest that NHP6A entry into the nucleus proceeds by a nonclassical Ran-independent pathway.  相似文献   

7.
8.
9.
10.
Porcine circovirus type 2 possesses a circular, single-stranded DNA genome that requires the replication protein (Rep) for virus replication. To characterize the DNA binding potential and the significant region that confers the nuclear localization of the Rep protein, the defined coding regions of rep gene were cloned and expressed. All of the recombinant proteins except for the N-terminal 110 residues deletion mutant could bind to the double-stranded minimal binding site of replication origin (ori). In addition, the N-terminal deletion mutant lacking 110 residues exhibited mainly cytoplasmic staining in the transfected cells in contrast to the others, which localized dominantly in the nucleus, suggesting that this N-terminal domain is essential for nuclear localization. Furthermore, a series of green fluorescence proteins (GFP) containing potential nuclear localization signal (NLS) sequences were tested for their cellular distribution. The ability of the utmost 20 residues of the N-terminal region to target the GFP to the nucleus confirmed its role as a functional NLS.  相似文献   

11.
I Meier  T Phelan  W Gruissem  S Spiker    D Schneider 《The Plant cell》1996,8(11):2105-2115
The interaction of chromatin with the nuclear matrix via matrix attachment regions (MARs) on the DNA is considered to be of fundamental importance for higher order chromatin organization and regulation of gene expression. Here, we report a novel nuclear matrix-localized MAR DNA binding protein, designated MAR binding filament-like protein 1 (MFP1), from tomato. In contrast to the few animal MAR DNA binding proteins thus far identified, MFP1 contains a predicted N-terminal transmembrane domain and a long filament-like alpha-helical domain that is similar to diverse nuclear and cytoplasmic filament proteins from animals and yeast. DNA binding assays established that MFP1 can discriminate between animal and plant MAR DNAs and non-MAR DNA fragments of similar size and AT content. Deletion mutants of MFP1 revealed a novel, discrete DNA binding domain near the C terminus of the protein. MFP1 is an in vitro substrate for casein kinase II, a nuclear matrix-associated protein kinase. Its structure, MAR DNA binding activity, and nuclear matrix localization suggest that MFP1 is likely to participate in nuclear architecture by connecting chromatin with the nuclear matrix and potentially with the nuclear envelope.  相似文献   

12.
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
14.
15.
We identified four basic amino acid residues as nuclear localization signals (NLS) in the C-terminal domain of the prototype foamy viral (PFV) integrase (IN) protein that were essential for viral replication. We constructed seven point mutants in the C-terminal domain by changing the lysine and arginine at residues 305, 308, 313, 315, 318, 324, and 329 to threonine or proline, respectively, to identify residues conferring NLS activity. Our results showed that mutation of these residues had no effect on expression assembly, release of viral particles, or in vitro recombinant IN enzymatic activity. However, mutations at residues 305 (R → T), 313(R → T), 315(R → P), and 329(R → T) lead to the production of defective viral particles with loss of infectivity, whereas non-defective mutations at residues 308(R → T), 318(K → T), and 324(K → T) did not show any adverse effects on subsequent production or release of viral particles. Sub-cellular fractionation and immunostaining for viral protein PFV-IN and PFV-Gag localization revealed predominant cytoplasmic localization of PFV-IN in defective mutants, whereas cytoplasmic and nuclear localization of PFV-IN was observed in wild type and non-defective mutants. However sub-cellular localization of PFV-Gag resulted in predominant nuclear localization and less presence in the cytoplasm of the wild type and non-defective mutants. But defective mutants showed only nuclear localization of Gag. Therefore, we postulate that four basic arginine residues at 305, 313, 315 and 329 confer the karyoplilic properties of PFV-IN and are essential for successful viral integration and replication.  相似文献   

16.
17.
Although A-type lamins are ubiquitously expressed, their role in the tissue-specificity of human laminopathies remains enigmatic. In this study, we generate a series of transfection constructs encoding missense lamin A mutant proteins fused to green fluorescent protein and investigate their subnuclear localization using quantitative live cell imaging. The mutant constructs used included the laminopathy-inducing lamin A rod domain mutants N195K, E358K, M371K, R386K, the tail domain mutants G465D, R482L, and R527P, and the Hutchinson-Gilford progeria syndrome-causing deletion mutant, progerin (LaA delta50). All mutant derivatives induced nuclear aggregates, except for progerin, which caused a more lobulated phenotype of the nucleus. Quantitative analysis revealed that the frequency of nuclear aggregate formation was significantly higher (two to four times) for the mutants compared to the wild type, although the level of lamin fusion proteins within nuclear aggregates was not. The distribution of endogenous A-type lamins was altered by overexpression of the lamin A mutants, coexpression experiments revealing that aberrant localization of the N195K and R386K mutants had no effect on the subnuclear distribution of histones H2A or H2B, or on nuclear accumulation of H2A overexpressed as a DsRed2 fusion protein. The GFP-lamin fusion protein-expressing constructs will have important applications in the future, enabling live cell imaging of nuclear processes involving lamins and how this may relate to the pathogenesis of laminopathies.  相似文献   

18.
RNA helicase II/Gu (RH-II/Gu) is a nucleolar RNA helicase of the DEAD-box superfamily. In this study, the functional domains of RH-II/Gu molecule were mapped by fusing the protein or its deletion mutants with a green fluorescence protein and subsequently transfecting or microinjecting the recombinant constructs into HeLa cells. In addition to the identification of a nuclear localization signal (NLS) in the N-terminus and a nucleolar targeting signal in the central helicase domain, a hidden NLS and a nucleolar targeting signal were found in the C-terminal arginine/glycine-rich domain. RH-II/Gu colocalized with fibrillarin, a component of the dense fibrillar region of the nucleolus. Overexpression of the entire RH-II/Gu protein or specific domains of the protein in HeLa cells did not interfere with the normal distribution of fibrillarin. However, when the helicase domain was truncated, the distribution pattern of fibrillarin was distorted. Microinjection of the wild-type RH-II/Gu cDNA into the nucleus of HeLa cells did not disrupt normal cell growth. However, when cells were injected with mutant DNA, only a small percentage of HeLa cells progressed through the cell cycle. Analysis of centrosomes in transfected cells demonstrated that most of the mutant-expressing cells were arrested early in the cell cycle. The results suggest that each of the structural domains of RH-II/Gu is necessary for cell growth and cell cycle progression.  相似文献   

19.
20.
Nuclear import of plasmid DNA mediated by a nuclear localization signal (NLS) derived from SV40 T antigen was investigated in a cell-free extract. In vitro assembled sea urchin male pronuclei were incubated in a 100,000g supernatant of a zebrafish fertilized egg lysate, together with fluorescently labeled plasmid DNA bound to NLS or nuclear import deficient reverse NLS (revNLS) peptides. After 3 hr, DNA-NLS, but not DNA-revNLS, complexes were bound around the nuclear periphery. We demonstrate that nuclear import of DNA-NLS complexes is a two-step process involving binding to, and translocation across, the nuclear envelope. Binding is ATP-independent, occurs at 0°C and is Ca2+-independent. By contrast, translocation requires ATP hydrolysis, Ca2+, is temperature dependent and is blocked by the lectin wheat germ agglutinin. Both binding and translocation are competitively inhibited by albumin-NLS conjugates, require heat-labile cytosolic factors, and are inhibited by N-ethylmaleimide treatment of the cytosol. Binding and translocation are differentially affected by cytosol dilutions, suggesting that at least two distinct soluble fractions are required for nuclear import. The requirements for NLS-mediated nuclear import of plasmid DNA are similar to those for nuclear import of protein-NLS conjugates in permeabilized cells. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号