首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATM (ataxia-telangiectasia-mutated) is a Ser/Thr kinase involved in cell cycle checkpoints and DNA repair. Human Rad9 (hRad9) is the homologue of Schizosaccharomyces pombe Rad9 protein that plays a critical role in cell cycle checkpoint control. To examine the potential signaling pathway linking ATM and hRad9, we investigated the modification of hRad9 in response to DNA damage. Here we show that hRad9 protein is constitutively phosphorylated in undamaged cells and undergoes hyperphosphorylation upon treatment with ionizing radiation (IR), ultraviolet light (UV), and hydroxyurea (HU). Interestingly, hyperphosphorylation of hRad9 induced by IR is dependent on ATM. Ser(272) of hRad9 is phosphorylated directly by ATM in vitro. Furthermore, hRad9 is phosphorylated on Ser(272) in response to IR in vivo, and this modification is delayed in ATM-deficient cells. Expression of hRad9 S272A mutant protein in human lung fibroblast VA13 cells disturbs IR-induced G(1)/S checkpoint activation and increased cellular sensitivity to IR. Together, our results suggest that the ATM-mediated phosphorylation of hRad9 is required for IR-induced checkpoint activation.  相似文献   

2.
Hyperthermia has long been known as a radio‐sensitizing agent that displays anti‐tumor effects, and has been developed as a therapeutic application. The mechanisms of hyperthermia‐induced radio‐sensitization are highly associated with inhibition of DNA repair. Our investigations aimed to show how hyperthermia inactivate homologous recombination repair in the process of sensitizing cells to ionizing radiation by using a series of DNA repair deficient Chinese Hamster cells. Significant differences in cellular toxicity attributable to hyperthermia at and above 42.5°C were observed. In wild‐type and non‐homologous end joining repair mutants, cells in late S phase showed double the amount heat‐induced radio‐sensitization effects of G1‐phase cells. Both radiation‐induced DNA double strand breaks and chromatin damage resulting from hyperthermia exposure was measured to be approximately two times higher in G2‐phase cells than G0/G1 cells. Additionally, G2‐phase cells took approximately two times as long to repair DNA damage over time than G0/G1‐phase cells. To supplement these findings, radiation‐induced Rad51 foci formations at DNA double strand break sites were observed to gradually dissociate in response to the temperature and time of hyperthermia exposure. Dissociated Rad51 proteins subsequently re‐formed foci at damage sites with time, and occurred in a trend also related to temperature and time of hyperthermia exposure. These findings suggest Rad51's dissociation and subsequent reformation at DNA double strand break sites in response to varying hyperthermia conditions plays an important role in hyperthermia‐induced radio‐sensitization. J. Cell. Physiol. 228: 1473–1481, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Error-free repair by homologous recombination of DNA double-strand breaks induced by ionizing radiation (IR) requires the Rad52 group proteins, including Rad51 and Rad54, in the yeast Saccharomyces cerevisiae [1]. The formation of a 'joint' molecule between the damaged DNA and the homologous repair template is a key step in recombination mediated by Rad51 and stimulated by Rad54 [2] [3] [4] [5]. Mammalian homologs of Rad51 and Rad54 have been identified [2] [3] [6]. Here, we demonstrate that mouse Rad54 (mRad54) formed IR-induced nuclear foci that colocalized with mRad51. Interaction between mRad51 and mRad54 was induced by genotoxic stress, but only when lesions that required mRad54 for their repair were formed. Interestingly, mRad54 was essential for the formation of IR-induced mRad51 foci. Rad54 belongs to the SWI2/SNF2 protein family, members of which modulate protein-DNA interactions in an ATP-driven manner [7]. Results of a topological assay suggested that purified human Rad54 (hRad54) protein can unwind double-stranded (ds) DNA at the expense of ATP hydrolysis. Unwinding of the homologous repair template could promote the formation or stabilization of hRad51-mediated joint molecules. Rad54 appears to be required downstream of other Rad52 group proteins, such as Rad52 and the Rad55-Rad57 heterodimer, that assist Rad51 in interacting with the broken DNA [2] [3] [4].  相似文献   

4.
Recruitment of the homologous recombination machinery to sites of double‐strand breaks is a cell cycle‐regulated event requiring entry into S phase and CDK1 activity. Here, we demonstrate that the central recombination protein, Rad52, forms foci independent of DNA replication, and its recruitment requires B‐type cyclin/CDK1 activity. Induction of the intra‐S‐phase checkpoint by hydroxyurea (HU) inhibits Rad52 focus formation in response to ionizing radiation. This inhibition is dependent upon Mec1/Tel1 kinase activity, as HU‐treated cells form Rad52 foci in the presence of the PI3 kinase inhibitor caffeine. These Rad52 foci colocalize with foci formed by the replication clamp PCNA. These results indicate that Mec1 activity inhibits the recruitment of Rad52 to both sites of DNA damage and stalled replication forks during the intra‐S‐phase checkpoint. We propose that B‐type cyclins promote the recruitment of Rad52 to sites of DNA damage, whereas Mec1 inhibits spurious recombination at stalled replication forks.  相似文献   

5.
H Neecke  G Lucchini    M P Longhese 《The EMBO journal》1999,18(16):4485-4497
We studied the response of nucleotide excision repair (NER)-defective rad14Delta cells to UV irradiation in G(1) followed by release into the cell cycle. Only a subset of checkpoint proteins appears to mediate cell cycle arrest and regulate the timely activation of replication origins in the presence of unrepaired UV-induced lesions. In fact, Mec1 and Rad53, but not Rad9 and the Rad24 group of checkpoint proteins, are required to delay cell cycle progression in rad14Delta cells after UV damage in G(1). Consistently, Mec1-dependent Rad53 phosphorylation after UV irradiation takes place in rad14Delta cells also in the absence of Rad9, Rad17, Rad24, Mec3 and Ddc1, and correlates with entry into S phase. Two-dimensional gel analysis indicates that late replication origins are not fired in rad14Delta cells UV-irradiated in G(1) and released into the cell cycle, which instead initiate DNA replication from early origins and accumulate replication and recombination intermediates. Progression through S phase of UV-treated NER-deficient mec1 and rad53 mutants correlates with late origin firing, suggesting that unregulated DNA replication in the presence of irreparable UV-induced lesions might result from a failure to prevent initiation at late origins.  相似文献   

6.
The cohesin protein complex holds sister chromatids together after synthesis until mitosis. It also contributes to post-replicative DNA repair in yeast and higher eukaryotes and accumulates at sites of laser-induced damage in human cells. Our goal was to determine whether the cohesin subunits SMC1 and Rad21 contribute to DNA double-strand break repair in X-irradiated human cells in the G2 phase of the cell cycle. RNA interference-mediated depletion of SMC1 sensitized HeLa cells to X-rays. Repair of radiation-induced DNA double-strand breaks, measured by γH2AX/53BP1 foci analysis, was slower in SMC1- or Rad21-depleted cells than in controls in G2 but not in G1. Inhibition of the DNA damage kinase DNA-PK, but not ATM, further inhibited foci loss in cohesin-depleted cells in G2. SMC1 depletion had no effect on DNA single-strand break repair in either G1 or late S/G2. Rad21 and SMC1 were recruited to sites of X-ray-induced DNA damage in G2-phase cells, but not in G1, and only when DNA damage was concentrated in subnuclear stripes, generated by partially shielded ultrasoft X-rays. Our results suggest that the cohesin complex contributes to cell survival by promoting the repair of radiation-induced DNA double-strand breaks in G2-phase cells in an ATM-dependent pathway.  相似文献   

7.
Caffeine and human DNA metabolism: the magic and the mystery   总被引:7,自引:0,他引:7  
The ability of caffeine to reverse cell cycle checkpoint function and enhance genotoxicity after DNA damage was examined in telomerase-expressing human fibroblasts. Caffeine reversed the ATM-dependent S and G2 checkpoint responses to DNA damage induced by ionizing radiation (IR), as well as the ATR- and Chk1-dependent S checkpoint response to ultraviolet radiation (UVC). Remarkably, under conditions in which IR-induced G2 delay was reversed by caffeine, IR-induced G1 arrest was not. Incubation in caffeine did not increase the percentage of cells entering the S phase 6-8h after irradiation; ATM-dependent phosphorylation of p53 and transactivation of p21(Cip1/Waf1) post-IR were resistant to caffeine. Caffeine alone induced a concentration- and time-dependent inhibition of DNA synthesis. It inhibited the entry of human fibroblasts into S phase by 70-80% regardless of the presence or absence of wildtype ATM or p53. Caffeine also enhanced the inhibition of cell proliferation induced by UVC in XP variant fibroblasts. This effect was reversed by expression of DNA polymerase eta, indicating that translesion synthesis of UVC-induced pyrimidine dimers by DNA pol eta protects human fibroblasts against UVC genotoxic effects even when other DNA repair functions are compromised by caffeine.  相似文献   

8.
Six checkpoint Rad proteins (Rad1, Rad3, Rad9, Rad17, Rad26, and Hus1) are needed to regulate checkpoint protein kinases Chk1 and Cds1 in fission yeast. Chk1 is required to prevent mitosis when DNA is damaged by ionizing radiation (IR), whereas either kinase is sufficient to prevent mitosis when DNA replication is inhibited by hydroxyurea (HU). Checkpoint Rad proteins are required for IR-induced phosphorylation of Chk1 and HU-induced activation of Cds1. IR activates Cds1 only during the DNA synthesis (S) phase, whereas HU induces Chk1 phosphorylation only in cds1 mutants. Here, we investigate the basis of the checkpoint signal specificity of Chk1 phosphorylation and Cds1 activation. We show that IR fails to induce Chk1 phosphorylation in HU-arrested cells. Release from the HU arrest following IR causes substantial Chk1 phosphorylation. These and other data indicate that Cds1 prevents Chk1 phosphorylation in HU-arrested cells, which suggests that Cds1 actively suppresses a repair process that leads to Chk1 phosphorylation. Cds1 becomes more highly concentrated in the nucleus only during the S phase of the cell cycle. This finding correlates with S-phase specificity of IR-induced activation of Cds1. However, constitutive nuclear localization of Cds1 does not enhance IR-induced activation of Cds1. This result suggests that Cds1 activation requires DNA structures or protein activities that are present only during S phase. These findings help to explain how Chk1 and Cds1 respond to different checkpoint signals.  相似文献   

9.
Progression of the cells through the S phase of the cell cycle is connected with accumulation of stalled and collapsed replication forks that are repaired by homologous recombination. To investigate the temporal order of homologous recombination events during the S phase, HeLa cells synchronized at the G1/S phase boundary with mimosine were released to progress into the S phase and the phosphorylation of the histone variant H2AX, the appearance of Rad51 nuclear foci and the subcellular redistribution of Rad51 were followed. The results showed that there was gradual accumulation of double-strand breaks as judged by the increase in the phosphorylation of H2AX during the S phase. Rad51 nuclear foci did not appear until middle S phase, and this was accompanied by an increase in the chromatin- and nuclear matrix-bound Rad51 in the middle to late S phase. To determine the role of the intra S phase checkpoint in the S phase-dependent redistribution of Rad51 the cells were released in the S phase in the presence of the protein kinase inhibitors caffeine and wortmannin. The results suggest that the association of Rad51 with the nuclear matrix is regulated by activation of the intra S phase ATR-dependent checkpoint pathway.  相似文献   

10.
In mammalian and budding yeast cells treated with genotoxic agents, different proteins implicated in detecting, signalling or repairing DNA lesions form nuclear foci. We studied foci formed by proteins involved in these processes in living fission yeast cells, which is amenable to genetic and molecular analysis. Using fluorescent tags, we analysed subnuclear localisations of the DNA damage checkpoint protein Rad9, of the homologous recombination protein Rad22 and of PCNA, which are implicated in many aspects of DNA metabolism. After inducing double strand breaks (DSBs) with ionising radiations, Rad22, Rad9 and PCNA form a low number of nuclear foci. Rad9 recruitment to foci depends on the presence of Rad1, Hus1 and Rad17, but is independent of downstream checkpoint effectors and of homologous recombination proteins. Likewise, Rad22 and PCNA form foci despite inactive homologous recombination repair and impaired DNA damage checkpoint. Rad22 and Rad9 foci co-localise completely, whereas PCNA co-localises with Rad22 and Rad9 only partially. Foci do not disassemble in cells unable to repair DNA by homologous recombination. Thus, in fission yeast, DSBs are detected by the DNA damage checkpoint and are repaired by homologous recombination at a few spatially confined subnuclear compartments where Rad22, Rad9 and PCNA concentrate independently.  相似文献   

11.
12.
In budding yeast, the Rad9 protein is an important player in the maintenance of genomic integrity and has a well-characterised role in DNA damage checkpoint activation. Recently, roles for different post-translational histone modifications in the DNA damage response, including H2A serine 129 phosphorylation and H3 lysine 79 methylation, have also been demonstrated. Here, we show that Rad9 recruitment to foci and bulk chromatin occurs specifically after ionising radiation treatment in G2 cells. This stable recruitment correlates with late stages of double strand break (DSB) repair and, surprisingly, it is the hypophosphorylated form of Rad9 that is retained on chromatin rather than the hyperphosphorylated, checkpoint-associated, form. Stable Rad9 accumulation in foci requires the Mec1 kinase and two independently regulated histone modifications, H2A phosphorylation and Dot1-dependent H3 methylation. In addition, Rad9 is selectively recruited to a subset of Rad52 repair foci. These results, together with the observation that rad9Delta cells are defective in repair of IR breaks in G2, strongly indicate a novel post checkpoint activation role for Rad9 in promoting efficient repair of DNA DSBs by homologous recombination.  相似文献   

13.
ATR (ATM and Rad3-related), a PI kinase-related kinase (PIKK), has been implicated in the DNA structure checkpoint in mammalian cells. ATR associates with its partner protein ATRIP to form a functional complex in the nucleus. In this study, we investigated the role of the ATRIP coiled-coil domain in ATR-mediated processes. The coiled-coil domain of human ATRIP contributes to self-dimerization in vivo, which is important for the stable translocation of the ATR-ATRIP complex to nuclear foci that are formed after exposure to genotoxic stress. The expression of dimerization-defective ATRIP diminishes the maintenance of replication forks during treatment with replication inhibitors. By contrast, it does not compromise the G2/M checkpoint after IR-induced DNA damage. These results show that there are two critical functions of ATR-ATRIP after the exposure to genotoxic stress: maintenance of the integrity of replication machinery and execution of cell cycle arrest, which are separable and are achieved via distinct mechanisms. The former function may involve the concentrated localization of ATR to damaged sites for which the ATRIP coiled-coil motif is critical.  相似文献   

14.
TRF1, a duplex telomeric DNA-binding protein, plays an important role in telomere metabolism. We have previously reported that a fraction of endogenous TRF1 can stably exist free of telomere chromatin when it is phosphorylated at T371 by Cdk1; however, the role of this telomere-free (pT371)TRF1 has yet to be fully characterized. Here we show that phosphorylated (pT371)TRF1 is recruited to sites of DNA damage, forming damage-induced foci in response to ionizing radiation (IR), etoposide and camptothecin. We find that IR-induced (pT371)TRF1 foci formation is dependent on the ATM- and Mre11/Rad50/Nbs1-mediated DNA damage response. While loss of functional BRCA1 impairs the formation of IR-induced (pT371)TRF1 foci, depletion of either 53BP1 or Rif1 stimulates IR-induced (pT371)TRF1 foci formation. In addition, we show that TRF1 depletion or the lack of its phosphorylation at T371 impairs DNA end resection and repair of nontelomeric DNA double-strand breaks by homologous recombination. The lack of TRF1 phosphorylation at T371 also hampers the activation of the G2/M checkpoint and sensitizes cells to PARP inhibition, IR and camptothecin. Collectively, these results reveal a novel but important function of phosphorylated (pT371)TRF1 in facilitating DNA double-strand break repair and the maintenance of genome integrity.  相似文献   

15.
Rad9, a key component of genotoxin-activated checkpoint signaling pathways, associates with Hus1 and Rad1 in a heterotrimeric complex (the 9-1-1 complex). Rad9 is inducibly and constitutively phosphorylated. However, the role of Rad9 phosphorylation is unknown. Here we identified nine phosphorylation sites, all of which lie in the carboxyl-terminal 119-amino acid Rad9 tail and examined the role of phosphorylation in genotoxin-triggered checkpoint activation. Rad9 mutants lacking a Ser-272 phosphorylation site, which is phosphorylated in response to genotoxins, had no effect on survival or checkpoint activation in Mrad9-/- mouse ES cells treated with hydroxyurea (HU), ionizing radiation (IR), or ultraviolet radiation (UV). In contrast, additional Rad9 tail phosphorylation sites were essential for Chk1 activation following HU, IR, and UV treatment. Consistent with a role for Chk1 in S-phase arrest, HU- and UV-induced S-phase arrest was abrogated in the Rad9 phosphorylation mutants. In contrast, however, Rad9 did not play a role in IR-induced S-phase arrest. Clonogenic assays revealed that cells expressing a Rad9 mutant lacking phosphorylation sites were as sensitive as Rad9-/- cells to UV and HU. Although Rad9 contributed to survival of IR-treated cells, the identified phosphorylation sites only minimally contributed to survival following IR treatment. Collectively, these results demonstrate that the Rad9 phospho-tail is a key participant in the Chk1 activation pathway and point to additional roles for Rad9 in cellular responses to IR.  相似文献   

16.
17.
18.
In response to DNA damage, cells activate a complex protein network designed to sustain genomic integrity. Many of the proteins involved in the network form discrete repair foci, the composition of which is determined by the specific type of damage. Replication protein A (RPA) and the Mre11/Rad50/Nbs1 (MRN) complex both participate in foci and co-localize at certain types of lesions. Following etoposide (ETOP) treatment, cells form foci containing either RPA or the MRN complex, but not both. To investigate this preferential foci formation, we used cell cycle synchronization experimentation. We demonstrate that cells in S phase contain RPA foci but lack phospho-Nbs1 foci. This is consistent with RPA’s role in homologous recombination repair of DNA double-strand breaks (DSBs), the predominant form of repair during S phase. Cells synchronized at G0/G1 phase contain phospho-Nbs1 foci, consistent with the MRN complex involvement in non-homologous end joining, the predominant form of repair in G1 phase. Treatment of cells with the proteasome inhibitor MG132 dramatically reduced the percentage of cells forming phospho-Nbs1 foci but did not alter the percentage of cells containing RPA or phospho-RPA foci. ETOP induced similar amounts of damage in all phases of the cell cycle as measured by the comet assay. These data suggest that in response to DNA DSBs, cell cycle-preferred repair pathways differentially engage RPA and the MRN complex in repair foci.  相似文献   

19.
20.
5-Fluorouracil (5-FU) has long been a mainstay antimetabolite chemotherapeutic drug for the treatment of major solid tumors, particularly colorectal cancer. 5-FU is processed intracellularly to yield active metabolites that compromise RNA and DNA metabolism. However, the mechanisms responsible for its cytotoxicity are not fully understood. From the phenotypic analysis of mutant chicken B lymphoma DT40 cells, we found that homologous recombinational repair (HRR), involving Rad54 and BRCA2, and the ATR-Chk1 signaling pathway, involving Rad9 and Rad17, significantly contribute to 5-FU tolerance. 5-FU induced γH2AX nuclear foci, which were colocalized with the key HRR factor Rad51, but not with DNA double-strand breaks (DSBs), in a dose-dependent manner as cells accumulated in the S phase. Inhibition of Chk1 kinase by UCN-01 increased 5-FU-induced γH2AX and enhanced 5-FU cytotoxicity not only in wild-type cells but also in Rad54- or BRCA2-deficient cells, suggesting that HRR and Chk1 kinase have non-overlapping roles in 5-FU tolerance. 5-FU-induced Chk1 phosphorylation was significantly impaired in Rad9- or Rad17-deficient cells, and severe γH2AX nuclear foci and DSBs were formed, which was followed by apoptosis. Finally, inhibition of Chk1 kinase by UCN-01 increased 5-FU-induced γH2AX nuclear foci and enhanced 5-FU cytotoxicity in Rad9- or Rad17-deficient cells. These results suggest that Rad9- and Rad17-independent activation of the ATR-Chk1 signaling pathway also significantly contributes to 5-FU tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号