首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Microvascular endothelial cells play a key role in inflammation by undergoing activation and recruiting circulating immune cells into tissues and foci of inflammation, an early and rate-limiting step in the inflammatory process. We have previously [Binion et al., Gastroenterology112:1898-1907, 1997] shown that human intestinal microvascular endothelial cells (HIMEC) isolated from surgically resected inflammatory bowel disease (IBD) patient tissue demonstrate significantly increased leukocyte binding in vitro compared to normal HIMEC. Our studies [Binion et al., Am. J. Physiol.275 (Gastrointest. Liver Physiol. 38):G592-G603, 1998] have also demonstrated that nitric oxide (NO) production by inducible nitric oxide synthase (iNOS) normally plays a key role in downregulating HIMEC activation and leukocyte adhesion. Using primary cultures of HIMEC derived from normal and IBD patient tissues, we sought to determine whether alterations in iNOS-derived NO production underlies leukocyte hyperadhesion in IBD. Both nonselective (N(G)-monomethyl-L-arginine) and specific (N-Iminoethyl-L-lysine) inhibitors of iNOS significantly increased leukocyte binding by normal HIMEC activated with cytokines and lipopolysaccharide (LPS), but had no effect on leukocyte adhesion by similarly activated IBD HIMEC. When compared to normal HIMEC, IBD endothelial cells had significantly decreased levels of iNOS mRNA, protein, and NO production following activation. Addition of exogenous NO by co-culture with normal HIMEC or by pharmacologic delivery with the long-acting NO donor detaNONOate restored a normal leukocyte binding pattern in the IBD HIMEC. These data suggest that loss of iNOS expression is a feature of chronically inflamed microvascular endothelial cells, which leads to enhanced leukocyte binding, potentially contributing to chronic, destructive inflammation in IBD.  相似文献   

3.
Nitric oxide (.NO) generation from conversion of l-arginine to citrulline by nitric oxide synthase isoforms plays a critical role in vascular homeostasis. Loss of .NO is linked to vascular pathophysiology and is decreased in chronically inflamed gut blood vessels in inflammatory bowel disease (IBD; Crohn's disease and ulcerative colitis). Mechanisms underlying decreased .NO production in IBD gut microvessels are not fully characterized. Loss of .NO generation may result from increased arginase (AR) activity, which enzymatically competes with nitric oxide synthase for the common substrate l-arginine. We characterized AR expression in IBD microvessels and endothelial cells and its contribution to decreased .NO production. AR expression was assessed in resected gut tissues and human intestinal microvascular endothelial cells (HIMEC). AR expression significantly increased in both ulcerative colitis and Crohn's disease microvessels and submucosal tissues compared with normal. TNF-alpha/lipopolysaccharide increased AR activity, mRNA and protein expression in HIMEC in a time-dependent fashion. RhoA/ROCK pathway, a negative regulator of .NO generation in endothelial cells, was examined. The RhoA inhibitor C3 exoenzyme and the ROCK inhibitor Y-27632 both attenuated TNF-alpha/lipopolysaccharide-induced MAPK activation and blocked AR expression in HIMEC. A significantly higher AR activity and increased RhoA activity were observed in IBD submucosal tissues surrounding microvessels compared with normal control gut tissue. Functionally, inhibition of AR activity decreased leukocyte binding to HIMEC in an adhesion assay. Loss of .NO production in IBD microvessels is linked to enhanced levels of AR in intestinal endothelial cells exposed to chronic inflammation in vivo.  相似文献   

4.
The calcineurin inhibitor cyclosporine A (CsA) modulates leukocyte cytokine production but may also effect nonimmune cells, including microvascular endothelial cells, which regulate the inflammatory process through leukocyte recruitment. We hypothesized that CsA would promote a proinflammatory phenotype in human intestinal microvascular endothelial cells (HIMEC), by inhibiting inducible nitric-oxide synthase (iNOS, NOS2)-derived NO, normally an important mechanism in limiting endothelial activation and leukocyte adhesion. Primary cultures of HIMEC were used to assess CsA effects on endothelial activation, leukocyte interaction, and the expression of iNOS as well as cell adhesion molecules. CsA significantly increased leukocyte binding to activated HIMEC, but paradoxically decreased endothelial expression of cell adhesion molecules (E-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule-1). In contrast, CsA completely inhibited the expression of iNOS in tumor necrosis factor-alpha/lipopolysaccharide-activated HIMEC. CsA blocked p38 MAPK phosphorylation in activated HIMEC, a key pathway in iNOS expression, but failed to inhibit NFkappaB activation. These studies demonstrate that CsA exerts a proinflammatory effect on HIMEC by blocking iNOS expression. CsA exerts a proinflammatory effect on the microvascular endothelium, and this drug-induced endothelial dysfunction may help explain its lack of efficacy in the long-term treatment of chronically active inflammatory bowel disease.  相似文献   

5.
Sphingosine-1-phosphate receptors (S1PRs) have an impact on the intestinal inflammation of inflammatory bowel disease (IBD) by regulating lymphocyte migration and differentiation. S1PR modulators as an emerging therapeutic approach are being investigated for the treatment of IBD. However, the role of S1PRs in intestinal vessels has not drawn much attention. Intestinal vascular damage is one of the major pathophysiological features of IBD, characterized by increased vascular density and impaired barrier function. S1PRs have pleiotropic effects on vascular endothelial cells, including proliferation, migration, angiogenesis and barrier homeostasis. Mounting evidence shows that S1PRs are abnormally expressed on intestinal vascular endothelial cells in IBD. Unexpectedly, S1PR modulators may damage intestinal vasculature, for example increase intestinal bleeding; therefore, S1PRs are thought to be involved in the regulation of intestinal vascular function in IBD. However, little is understood about how S1PRs regulate intestinal vascular function and participate in the initiation and progression of IBD. In this review, we summarize the pathogenic role of S1PRs in and the underlying mechanisms behind the intestinal vascular injury in IBD in order for improving IBD practice including S1PR-targeted therapies.  相似文献   

6.
BACKGROUND: NKX2-3 is associated with inflammatory bowel disease (IBD). NKX2-3 is expressed in microvascular endothelial cells and the muscularis mucosa of the gastrointestinal tract. Human intestinal microvascular endothelial cells (HIMECs) are actively involved in the pathogenesis of IBD and IBD-associated microvascular dysfunction. To understand the cellular function of NKX2-3 and its potential role underlying IBD pathogenesis, we investigated the genes regulated by NKX2-3 in HIMEC using cDNA microarray. METHODOLOGY/PRINCIPAL FINDINGS: NKX2-3 expression was suppressed by shRNA in two HIMEC lines and gene expression was profiled by cDNA microarray. Pathway Analysis was used to identify gene networks according to biological functions and associated pathways. Validation of microarray and genes expression in intestinal tissues was assessed by RT-PCR. NKX2-3 regulated genes are involved in immune and inflammatory response, cell proliferation and growth, metabolic process, and angiogenesis. Several inflammation and angiogenesis related signaling pathways that play important roles in IBD were regulated by NKX2-3, including endothelin-1 and VEGF-PI3K/AKT-eNOS. Expression levels of NKX2-3, VEGFA, PI3K, AKT, and eNOS are increased in intestinal tissues from IBD patients and expression levels of EDN1 are decreased in intestinal tissues from IBD patients. These results demonstrated the important roles of NKX2-3, VEGF, PI3K, AKT, eNOS, and EDN1 in IBD pathogenesis. Correlation analysis showed a positive correlation between mRNA expression of NKX2-3 and VEGFA and a negative correlation between mRNA expression of NKX2-3 and EDN1 in intestinal tissues from IBD patients. CONCLUSION/RELEVANCE: NKX2-3 may play an important role in IBD pathogenesis by regulating endothelin-1 and VEGF signaling in HIMECs.  相似文献   

7.
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder characterized by increased leukocyte recruitment and subsequent tissue damage. An increase in the density of the microvasculature of the colon during IBD has been suggested, leading to the concept that angiogenesis may play a pathological role in IBD. Increased tissue and serum levels of the angiogenic cytokine VEGF-A have been reported in cases of active IBD. In this study, we examined the hypothesis that VEGF-A exerts a proinflammatory effect on colon microvascular endothelium that contributes to colonic inflammation. Leukocyte adhesion to VEGF-A-stimulated colon microvascular endothelial cells was examined using a parallel-plate hydrodynamic flow chamber. ICAM-1 adhesion molecule expression on colonic microvascular endothelium also was determined in response to VEGF-A stimulation, along with characterization of leukocyte adhesion molecule expression. High-dose VEGF-A (50 ng/ml) stimulation increased neutrophil and T cell adhesion to and decreased rolling velocities on activated endothelium, whereas low-dose VEGF-A (10 ng/ml) was without effect. Colonic endothelium constitutively expressed ICAM-1, which was significantly increased by treatment with 50 ng/ml VEGF-A or 10 ng/ml TNF-alpha but not 10 ng/ml VEGF-A. T cells expressed CD18 and CD11a with no expression of CD11b, whereas neutrophils expressed CD18, CD11a, and CD11b. Finally, VEGF-A-dependent leukocyte adhesion was found to occur in a CD18-dependent manner. These results demonstrate that VEGF-A levels found in IBD exert a proinflammatory effect similar to other inflammatory agents and suggest that this cytokine may serve as an intermediary between angiogenic stimulation and cell-mediated immune responses.  相似文献   

8.
Previous studies have suggested that intestinal epithelial cells (IECs) have the capacity to function as nonprofessional antigen presenting cells that in the normal state preferentially activate CD8+ T cells. However, under pathological conditions, such as those found in inflammatory bowel disease (IBD), persistent activation of CD4+ T cells is seen. The aim of this study was to determine whether the IBD IECs contribute to CD4+ T cell activation. Freshly isolated human IECs were obtained from surgical specimens of patients with or without IBD and cocultured with autologous or allogeneic peripheral blood T lymphocytes. Cocultures of normal T cells and IECs derived from IBD patients resulted in the preferential activation of CD4+ T cell proliferation that was associated with significant IFN-gamma, but not IL-2, secretion. Cytokine secretion and CD4+ T cell proliferation was inhibited by pretreatment of the IBD IECs with the anti-DR MAb L243. In contrast, normal IECs stimulated the proliferation and cytokine secretion by CD4+ T cells to a significantly lesser degree than IBD IECs. Furthermore, blockade of human leukocyte antigen-DR had a lesser effect in the normal IEC-CD4+ T cell cocultures. We conclude that IECs can contribute to the ongoing CD4+ T cell activation seen in IBD. We suggest that the apparent differences between the secreted levels of IFN-gamma indicate that it may play a dual role in intestinal homeostasis, in which low levels contribute to physiological inflammation whereas higher levels are associated with an uncontrolled inflammatory state.  相似文献   

9.
Bacterial flagellin has recently been identified as a ligand for Toll-like receptor 5 (TLR5). Human sites known to specifically express TLR5 include macrophages and gastric and intestinal epithelium. Because infection of intestinal epithelial cells with Salmonella leads to an active transport of flagellin to the subepithelial compartment in proximity to microvessels, we hypothesized that human intestinal endothelial cells functionally express TLR5, thus enabling an active inflammatory response upon binding of translocated flagellin. Endothelial expression of TLR5 in human macro- and microvascular endothelial cells was examined by RT-PCR, immunoblot analysis, and immunofluorescence. Endothelial expression of TLR5 in vivo was verified by immunohistochemistry. Endothelial modulation of ICAM-1 expression was quantitated using flow cytometry, and leukocyte transmigration in vitro was assessed by an endothelial transmigration assay. Epithelial-endothelial cellular interactions upon infection with viable Salmonella were investigated using a coculture system in vitro. We found that Salmonella-infected intestinal epithelial cells induce endothelial ICAM-1 expression in cocultured human endothelial cells. Both macro- (HUVEC) and microvascular endothelial cells derived from human skin (human dermal microvascular endothelial cell 1) and human colon (human intestinal microvascular endothelial cells) were found to express high constitutive amounts of TLR5 mRNA and protein. These findings were paralleled by strong immunoreactivity for TLR5 of normal human colonic microvessels in vivo. Furthermore, incubation of human dermal microvascular endothelial cells with flagellin from clinical isolates of Escherichia and Salmonella strains led to a marked up-regulation of ICAM-1, as well as to an enhanced leukocyte transendothelial cell migration. These results suggest that endothelially expressed TLR5 might play a previously unrecognized role in the innate immune response toward bacterial Ags.  相似文献   

10.
Crohn’s disease (CD) and ulcerative colitis (UC), two forms of inflammatory bowel disease (IBD), are chronic, relapsing, and tissue destructive lesions that are accompanied by the uncontrolled activation of effector immune cells in the mucosa. Recent estimates indicate that there are 1.3 million annual cases of IBD in the United States, 50% of which consists of CD and 50% of UC. Chemokines and cytokines play a pivotal role in the regulation of mucosal inflammation by promoting leukocyte migration to sites of inflammation ultimately leading to tissue damage and destruction. In recent years, experimental studies in rodents have led to a better understanding of the role played by these inflammatory mediators in the development and progression of colitis. However, the clinical literature on IBD remains limited. Therefore, the aim of this study was to evaluate systemic concentrations of key chemokines and cytokines in forty-two IBD patients with a range of disease activity compared to levels found in ten healthy donors. We found a significant increase in an array of chemokines including macrophage migration factor (MIF), CCL25, CCL23, CXCL5, CXCL13, CXCL10, CXCL11, MCP1, and CCL21 in IBD patients as compared to normal healthy donors (P < 0.05). Further, we also report increases in the inflammatory cytokines IL-16, IFN-γ, IL-1β and TNF-α in IBD patients when compared to healthy donors (P < 0.05). These data clearly indicate an increase in circulating levels of specific chemokines and cytokines that are known to modulate systemic level through immune cells results in affecting local intestinal inflammation and tissue damage in IBD patients. Blockade of these inflammatory mediators should be explored as a mechanism to alleviate or even reverse symptoms of IBD.  相似文献   

11.
Reactive oxygen species (ROS) exhibit a key role in the pathogenesis of inflammatory bowel disease (IBD). 3,3'-Diindolylmethane (DIM) can protect against oxidative stress in a breast cancer susceptibility gene 1 (BRCA1)-dependent manner. The aim of this study was to examine the therapeutic effects of DIM in experimental colitis and investigate the possible mechanisms underlying its effects on intestinal inflammation. The therapeutic effects of DIM were studied in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Pathological markers of colitis severity, antioxidant activity, and ROS generation in colonic tissue were measured. The impact of DIM on ROS-induced endothelial vascular cell adhesion molecule 1 (VCAM-1) expression and leukocyte-endothelial cell interaction was further investigated in cultures of endothelial cells and in the TNBS-induced colitis model. Administration of DIM was demonstrated to attenuate experimental colitis, as judged by pathological indices. DIM could effectively stimulate the expression of BRCA1 in vitro and in vivo and reduce ROS generation, leading to the inhibition of VCAM-1 expression and leukocyte-endothelial cell adhesion, and finally resulted in an alleviation of experimental colitis. DIM has shown anti-IBD activity in animal models by inhibiting ROS-induced VCAM-1 expression and leukocyte recruitment via a BRCA1-dependent antioxidant pathway and thus may offer potential treatments for IBD patients.  相似文献   

12.
Lipopolysaccharide (endotoxin) tolerance is well described in monocytes and macrophages, but is less well characterized in endothelial cells. Because intestinal microvascular endothelial cells exhibit a strong immune response to LPS challenge and play a critical regulatory role in gut inflammation, we sought to characterize the activation response of these cells to repeated LPS exposure. Primary cultures of human intestinal microvascular endothelial cells (HIMEC) were stimulated with LPS over 6-60 h and activation was assessed using U937 leukocyte adhesion, expression of E-selectin, ICAM-1, VCAM-1, IL-6, IL-8, manganese superoxide dismutase, HLA-DR, and CD86. Effect of repeat LPS stimulation on HIMEC NF-kappaB and mitogen-activated protein kinase (MAPK) activation, generation of superoxide anion, and Toll-like receptor 4 expression was characterized. LPS pretreatment of HIMEC for 24-48 h significantly decreased leukocyte adhesion after subsequent LPS stimulation. LPS pretreatment inhibited expression of E-selectin, VCAM-1, IL-6, and CD86, while ICAM-1, IL-8, and HLA-DR were not altered. Manganese superoxide dismutase expression increased with repeated LPS stimulation, with a reduction in intracellular superoxide. NF-kappaB activation was transiently inhibited by LPS pretreatment for 6 h, but not at later time points. In contrast, p44/42 MAPK, p38 MAPK, and c-Jun N-terminal kinase activation demonstrated inhibition by LPS pretreatment 24 or 48 h prior. Toll-like receptor 4 expression on HIMEC was not altered by LPS. HIMEC exhibit endotoxin tolerance after repeat LPS exposure in vitro, characterized by diminished activation and intracellular superoxide anion concentration, and reduced leukocyte adhesion. HIMEC possess specific mechanisms of immunoregulatory hyporesponsiveness to repeated LPS exposure.  相似文献   

13.
Traditionally described as a major anti-coagulant system, the protein C (PC) pathway, consisting of thrombomodulin, the endothelial cell protein C receptor and activated PC (APC), is gaining increasing attention as an important regulator of microvascular inflammation. Although they possess several anti-inflammatory and cytoprotective functions, the expression and function of the components of the PC pathway is downregulated during inflammation. Recent evidence suggests that the PC pathway is defective in patients with inflammatory bowel disease (IBD) and that restoring its function has anti-inflammatory effects on cultured intestinal microvascular endothelial cells and in animal models of colitis. Here, we propose that the PC pathway has an important role in governing intestinal microvascular inflammation and might provide a novel therapeutic target in the management of IBD.  相似文献   

14.
Activated polymorphonuclear leucocytes, which are accumulated in inflammatory lesions of inflammatory bowel disease, produce tissue destructive, oxygen derived free radicals and other inflammatory mediators. The PMN superoxide production elicited by formyl-methionyl-leucyl-phenylalanine or the complement split product 5a were compared in IBD and healthy volunteers. Significantly reduced superoxide production was found in PMNs from patients with Crohn's disease as compared to normal controls, when fMLP or CSa were used as stimulants (p < 0.001 and p < 0.01, respectively), whereas no differences were found when ulcerative colitis patients were compared to normal controls (p > 0.05). The enhanced oxygen derived free radical production previously reported in active IBD, and especially in CD intestinal lesions, may either be due to an accumulation of productive phagocytes or to a change of the inflammatory profile of these cells when migrating into intestinal lesions, possibly due to interaction with other mediators (e.g. adhesion molecules and interleukins).  相似文献   

15.
Bradykinin is a mediator of inflammation, responsible for pain, vasodilation, and capillary permeability. Bradykinin receptor 1 (B(1)R) and bradykinin receptor 2 (B(2)R) are G protein-coupled receptors that mediate kinin effects. The latter is constitutive and rapidly desensitized; the former is induced by inflammatory cytokines and resistant to densensitization. The distribution of bradykinin receptors in human intestinal tissue was studied in patients with inflammatory bowel disease (IBD), namely ulcerative colitis (UC) and Crohn's disease (CD). Both B(2)R and B(1)R proteins are expressed in the epithelial cells of normal and IBD intestines. B(1)R protein is visualized in macrophages at the center of granulomas in CD. B(2)R protein is normally present in the apexes of enterocytes in the basal area and intracellularly in inflammatory tissue. In contrast, B(1)R protein is found in the basal area of enterocytes in normal intestine but in the apical portion of enterocytes in inflamed tissue. B(1)R protein is significantly increased in both active UC and CD intestines compared with controls. In patients with active UC, B(1)R mRNA is significantly higher than B(2)R mRNA. However, in inactive UC patients, the B(1)R and B(2)R mRNA did not differ significantly. Thus bradykinin receptors in IBD may reflect intestinal inflammation. Increased B(1)R gene and protein expression in active IBD provides a structural basis of the important role of bradykinin in chronic inflammation.  相似文献   

16.
周林妍  李岩 《微生物学通报》2020,47(5):1600-1606
炎症性肠病(inflammatoryboweldisease,IBD)是一种肠道慢性炎症性疾病,其发病机制尚不清楚。然而,IBD的发病率不断上升给患者及其家属带来了巨大的经济负担,需要找到积极有效的治疗方法来帮助患者。最新的观点认为,宿主和肠道微生物之间的平衡被打破会触发遗传易感个体的免疫炎症反应。肠道菌群失调在炎症性肠病的发病及发展过程中起着重要的作用。临床研究发现,IBD患者肠道菌群失调程度不同,而联合应用益生菌可以改善这些患者的症状。越来越多的研究者密切关注肠道菌群与IBD的关系,并进行了深入的基础和临床研究。本文从肠道菌群对IBD的生理影响以及益生菌和粪便细菌移植等方面进行综述。  相似文献   

17.
Chemokines were originally identified as mediators of the inflammatory process and regulators of leukocyte trafficking. Subsequent studies revealed their essential roles in leukocyte physiology and pathology. Moreover, chemokines have profound effects on other types of cells associated with the inflammatory response, such as endothelial cells and fibroblasts. Thus, chemokines are crucial for cancer-related inflammation, which can promote tumor development and progression. Increasing evidence points to the vital effects of several chemokines on the proliferative and invasive properties of tumor cells. The wide range of activities of chemokines in tumorigenesis highlights their roles in tumor development and progression.  相似文献   

18.
Gastroesophageal reflux disease is the most common malady of the esophagus, affecting 7% of the United States population. Histological assessment demonstrates classic inflammatory mechanisms including selective leukocyte recruitment and hemorrhage, suggesting a prominent role for the microvasculature. We isolated and characterized human esophageal microvascular endothelial cells (EC) (HEMEC), examined inflammatory activation in response to cytokines, LPS, and acidic pH exposure, and identified signaling pathways that underlie activation. HEMEC displayed characteristic morphological and phenotypic features including acetylated LDL uptake. TNF-alpha/LPS activation of HEMEC resulted in upregulation of the cell adhesion molecules (CAM) ICAM-1, VCAM-1, E-selectin, and mucosal addressin CAM-1 (MAdCAM-1), increased IL-8 production, and enhanced leukocyte binding. Both acid and TNF-alpha/LPS activation lead to activation of SAPK/JNK in HEMEC that was linked to VCAM-1 expression and U-937 leukocyte adhesion. Expression of constitutive inducible nitric oxide synthase in HEMEC was in marked contrast to intestinal microvascular endothelial cells. In this study, we demonstrate that HEMECs are phenotypically and functionally distinct from lower gut-derived endothelial cells and will facilitate understanding of inflammatory mechanisms in esophageal inflammation.  相似文献   

19.
Mitogen-activated protein kinase (MAPK) in cardiac tissues   总被引:13,自引:0,他引:13  
Mitogen-activated protein kinase (MAPK) has recently emerged as a prominent role player in intracellular signalling in the ventricular myocyte with attention being focussed on its possible role in the development of ventricular hypertrophy. It is becoming clear that MAPK is also active in other cells of cardiac origin such as cardiac fibroblasts and possible functions of this signalling pathway in the heart have yet to be explored. In this report the mammalian MAPK pathway is briefly outlined, before reviewing current knowledge of the MAPK pathway in cardiac tissue (ventricular myocytes, vascular smooth muscle cells and cardiac fibroblasts). New data is also presented on the presence and activity of MAPK in two additional cardiac celltypes namely atrial myocytes and vascular endothelial cells from the coronary microcirculation. (Mol Cell Biochem 157: 49–57, 1996)  相似文献   

20.
The intestinal tract is covered by a total of 300 square metres of IECs (intestinal epithelial cells) that covers the entire intestinal mucosa. For protection against luminal xenobiotics, pathogens and commensal microbes, these IECs are equipped with membrane-bound transporters as well as the ability to secrete specific protective proteins. In patients with active IBD (inflammatory bowel disease), the expression of these proteins, e.g. ABC (ATP-binding cassette) transporters such as ABCG2 (ABC transporter G2) and defensins, is decreased, thereby limiting the protection against various luminal threats. Correct ER (endoplasmic reticulum)-dependent protein folding is essential for the localization and function of secreted and membrane-bound proteins. Inflammatory triggers, such as cytokines and nitric oxide, can impede protein folding, which causes the accumulation of unfolded proteins inside the ER. As a result, the unfolded protein response is activated which can lead to a cellular process named ER stress. The protein folding impairment affects the function and localization of several proteins, including those involved in protection against xenobiotics. In the present review, we discuss the possible inflammatory pathways affecting protein folding and eventually leading to IEC malfunction in patients with active IBD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号